Artificial Intelligence (AI) Assessment of Pediatric Dental Panoramic Radiographs (DPRs): A Clinical Study

被引:1
作者
Turosz, Natalia [1 ]
Checinska, Kamila [2 ]
Checinski, Maciej [3 ]
Lubecka, Karolina [3 ]
Blizniak, Filip [3 ]
Sikora, Maciej [1 ,4 ]
机构
[1] Hosp Minist Interior, Dept Maxillofacial Surg, Wojska Polskiego 51, PL-25375 Kielce, Poland
[2] AGH Univ Sci & Technol, Fac Mat Sci & Ceram, Dept Glass Technol & Amorphous Coatings, Mickiewicza 30, PL-30059 Krakow, Poland
[3] Prevent Med Ctr, Dept Oral Surg, Komorowskiego 12, PL-30106 Krakow, Poland
[4] Pomeranian Med Univ, Dept Biochem & Med Chem, Powstancow Wielkopolskich 72, PL-70111 Szczecin, Poland
关键词
dental caries; artificial intelligence; panoramic radiography; DMF index; PERFORMANCE; CARIES;
D O I
10.3390/pediatric16030067
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
This clinical study aimed to evaluate the sensitivity, specificity, accuracy, and precision of artificial intelligence (AI) in assessing permanent teeth in pediatric patients. Over one thousand consecutive DPRs taken in Kielce, Poland, with the Carestream CS9600 device were screened. In the study material, 35 dental panoramic radiographs (DPRs) of patients of developmental age were identified and included. They were automatically evaluated with an AI algorithm. The DPRs were then analyzed by researchers. The status of the following dichotomous variables was assessed: (1) decay, (2) missing tooth, (3) filled tooth, (4) root canal filling, and (5) endodontic lesion. The results showed high specificity and accuracy (all above 85%) in detecting caries, dental fillings, and missing teeth but low precision. This study provided a detailed assessment of AI performance in a previously neglected age group. In conclusion, the overall accuracy of AI algorithms for evaluating permanent dentition in dental panoramic radiographs is lower for pediatric patients than adults or the entire population. Hence, identifying primary teeth should be implemented in AI-driven software, at least so as to ignore them when assessing mixed dentition (ClinicalTrials.gov registration number: NCT06258798).
引用
收藏
页码:794 / 805
页数:12
相关论文
共 40 条
[11]   On evaluation metrics for medical applications of artificial intelligence [J].
Hicks, Steven A. ;
Struemke, Inga ;
Thambawita, Vajira ;
Hammou, Malek ;
Riegler, Michael A. ;
Halvorsen, Pal ;
Parasa, Sravanthi .
SCIENTIFIC REPORTS, 2022, 12 (01)
[12]   The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review [J].
Hung, Kuofeng ;
Montalvao, Carla ;
Tanaka, Ray ;
Kawai, Taisuke ;
Bornstein, Michael M. .
DENTOMAXILLOFACIAL RADIOLOGY, 2020, 49 (01)
[13]  
Hwang JJ, 2019, IMAGNG SCI DENT, V49, P1
[14]   Developments, application, and performance of artificial intelligence in dentistry - A systematic review [J].
Khanagar, Sanjeev B. ;
Al-ehaideb, Ali ;
Maganur, Prabhadevi C. ;
Vishwanathaiah, Satish ;
Patil, Shankargouda ;
Baeshen, Hosam A. ;
Sarode, Sachin C. ;
Bhandi, Shilpa .
JOURNAL OF DENTAL SCIENCES, 2021, 16 (01) :508-522
[15]   Artificial intelligence in pediatrics [J].
Li, Ya-Wen ;
Liu, Fang ;
Zhang, Tian-Nan ;
Xu, Fang ;
Gao, Yu-Chen ;
Wu, Tian .
CHINESE MEDICAL JOURNAL, 2020, 133 (03) :358-360
[16]   Dental Caries: A Disease Which Needs Attention [J].
Mathur, Vijay Prakash ;
Dhillon, Jatinder Kaur .
INDIAN JOURNAL OF PEDIATRICS, 2018, 85 (03) :202-206
[17]   TLR2 and TLR4 Polymorphisms Are Not Associated with Dental Caries in Polish Children [J].
Milona, Marta ;
Olszowski, Tomasz ;
Uzar, Izabela ;
Safranow, Krzysztof ;
Janiszewska-Olszowska, Joanna ;
Szmidt-Kadys, Monika ;
Rola, Hubert ;
Sikora, Maciej ;
Chlubek, Dariusz ;
Adler, Grazyna .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (13)
[18]   Deep learning for caries detection: A systematic review [J].
Mohammad-Rahimi, Hossein ;
Motamedian, Saeed Reza ;
Rohban, Mohammad Hossein ;
Krois, Joachim ;
Uribe, Sergio E. ;
Mahmoudinia, Erfan ;
Rokhshad, Rata ;
Nadimi, Mohadeseh ;
Schwendicke, Falk .
JOURNAL OF DENTISTRY, 2022, 122
[19]   The Lack of Association between FCN2 Gene Promoter Region Polymorphisms and Dental Caries in Polish Children [J].
Olszowski, T. ;
Milona, M. ;
Janiszewska-Olszowska, J. ;
Safranow, K. ;
Skonieczna-Zydecka, K. ;
Walczak, A. ;
Sikora, M. ;
Chlubek, D. ;
Madlani, A. ;
Adler, G. .
CARIES RESEARCH, 2017, 51 (01) :79-84
[20]   FCN1 polymorphisms are not the markers of dental caries susceptibility in Polish children: A case-control study [J].
Olszowski, Tomasz ;
Milona, Marta ;
Janiszewska-Olszowska, Joanna ;
Safranow, Krzysztof ;
Uzar, Izabela ;
Walczak, Alicja ;
Sikora, Maciej ;
Chlubek, Dariusz ;
Adler, Grazyna .
ORAL DISEASES, 2022, 28 (03) :771-776