Finite Groups with G-Permutable Normalizers of Sylow Subgroups

被引:0
作者
Kamornikov, S. F. [1 ]
Tyutyanov, V. N. [2 ]
Shemetkova, O. L. [3 ]
机构
[1] Francisk Skorina Gomel State Univ, Gomel, BELARUS
[2] MITSO Int Univ, Gomel, BELARUS
[3] Plekhanov Russian Univ Econ, Moscow, Russia
关键词
finite subgroup; Sylow subgroup; normalizer of a Sylow subgroup; G-permutable subgroup; hereditary G-permutable subgroup; P-subnormal subgroup;
D O I
10.1134/S0037446624040049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A and B be subgroups in a finite group G. Then A is (hereditarily) G-permutable with B if AB(x )= B(x)A for some x is an element of G(for some x is an element of <A, B>). A subgroup A in G is (hereditarily) G-permutable in G if A is (hereditarily) G-permutable with all subgroups in G. The article deals with the structure of G such that the normalizers of Sylow subgroups are (hereditarily) G-permutable.
引用
收藏
页码:771 / 777
页数:7
相关论文
共 50 条
[41]   Finite groups with generalized subnormal embedding of Sylow subgroups [J].
Vasil'ev, A. F. ;
Vasil'eva, T. I. ;
Vegera, A. S. .
SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (02) :200-212
[42]   Finite groups with some maximal subgroups of Sylow subgroups Q-supplemented [J].
Miao, Long .
COMMUNICATIONS IN ALGEBRA, 2007, 35 (01) :103-113
[43]   Finite groups with some maximal subgroups of Sylow subgroups a"3-supplemented [J].
Miao, Long .
MATHEMATICAL NOTES, 2009, 86 (5-6) :655-664
[44]   On the Sylow Normalizers of Some Simple Classical Groups [J].
Ahanjideh, N. ;
Iranmanesh, A. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (02) :459-467
[45]   Subgroups of the Fan of Sylow Subgroups and the Supersolvability of a Finite Group [J].
Vasilyeva, T. I. .
MATHEMATICAL NOTES, 2021, 110 (1-2) :186-195
[46]   Finite groups acting 2-transitively on their sylow subgroups [J].
Caiheng Li ;
Jie Wang .
Acta Mathematica Sinica, 1999, 15 :131-144
[47]   ON THE CHARACTERS OF SYLOW p-SUBGROUPS OF FINITE CHEVALLEY GROUPS G(pf) FOR ARBITRARY PRIMES [J].
Le, Tung ;
Magaard, Kay ;
Paolini, Alessandro .
MATHEMATICS OF COMPUTATION, 2020, 89 (323) :1501-1524
[48]   Supersolvability of finite factorizable groups with cyclic Sylow subgroups in the factors [J].
Monakhov, V. S. ;
Chirik, I. K. .
MATHEMATICAL NOTES, 2014, 96 (5-6) :983-991
[49]   Finite groups acting 2-transitively on their Sylow subgroups [J].
Li, CH .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 1999, 15 (01) :131-144
[50]   Finite Groups Acting 2-Transitively on Their Sylow Subgroups [J].
Caiheng LiDepartment of Mathematicsthe University of Western AustraliaNedlandsWAAustraliaJie WangDepartment of MathematicsPeking UniversityBeijing PRChina .
Acta Mathematica Sinica(English Series), 1999, 15 (01) :131-144