QL-YOLOv8s: Precisely Optimized Lightweight YOLOv8 Pavement Disease Detection Model

被引:1
|
作者
Guo, Jinbo [1 ]
Wang, Shenghuai [1 ]
Chen, Xiaohui [1 ]
Wang, Chen [1 ]
Zhang, Wei [1 ]
机构
[1] Hubei Univ Automot Technol, Sch Mech Engn, Shiyan 442002, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Accuracy; YOLO; Feature extraction; Road traffic; Object recognition; Surface cracks; Defect detection; Road transportation; Maintenance engineering; Road surface disease detection; lightweight; YOLOv8; MLCA; DWR; BiFPN; NETWORK;
D O I
10.1109/ACCESS.2024.3452129
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Detecting road surface defects is essential for highway maintenance, yet the application of most models is hindered by the limitations of existing detection resources. To address this challenge, we have enhanced YOLOv8, introducing a lightweight detection model dubbed QL-YOLOv8s. In this study, we employ the DIoU loss function to optimize bounding box regression, taking into account both the size of overlapping areas and the distance between the centers of boxes, thereby handling targets of various sizes and shapes with improved localization accuracy. Moreover, a lightweight Mixed Local Channel Attention (MLCA) has been incorporated into the backbone of the model, aimed at enhancing the recognition capabilities in complex environments without in-creasing the model's burden. Furthermore, by integrating the Dilated Wrapping Residual (DWR) module and C2f into BiFPN, we developed a new neck structure, BiFPN-D, and introduced a lightweight detection head, Detect-T3, thus augmenting the model's feature perception capacity, reducing parameter count, and boosting detection speed. Based on the RDD 2022 public dataset, QL-YOLOv8s demonstrated a reduction in parameter count and size by 37%, a decrease in com-putational requirements by 19%, and achieved an average precision of mAP0.5 at 95.8%. These results underscore the contribution and practical value of our method to the technology of automatic road defect detection.
引用
收藏
页码:128392 / 128403
页数:12
相关论文
共 50 条
  • [31] RVDR-YOLOv8: A Weed Target Detection Model Based on Improved YOLOv8
    Ding, Yuanming
    Jiang, Chen
    Song, Lin
    Liu, Fei
    Tao, Yunrui
    ELECTRONICS, 2024, 13 (11)
  • [32] YOLOv8-TDD: An Optimized YOLOv8 Algorithm for Targeted Defect Detection in Printed Circuit Boards
    Yunpeng, Gao
    Rui, Zhang
    Mingxu, Yang
    Sabah, Fahad
    JOURNAL OF ELECTRONIC TESTING-THEORY AND APPLICATIONS, 2024, 40 (05): : 645 - 656
  • [33] Optimized YOLOv8 for multi-scale object detection
    Rasheed, Areeg Fahad
    Zarkoosh, M.
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2025, 22 (01)
  • [34] GLU-YOLOv8: An Improved Pest and Disease Target Detection Algorithm Based on YOLOv8
    Yue, Guangbo
    Liu, Yaqiu
    Niu, Tong
    Liu, Lina
    An, Limin
    Wang, Zhengyuan
    Duan, Mingyu
    FORESTS, 2024, 15 (09):
  • [35] SGST-YOLOv8: An Improved Lightweight YOLOv8 for Real-Time Target Detection for Campus Surveillance
    Cheng, Gang
    Chao, Peizhi
    Yang, Jie
    Ding, Huan
    APPLIED SCIENCES-BASEL, 2024, 14 (12):
  • [36] Deep Learning for Tomato Disease Detection with YOLOv8
    Zayani, Hafedh Mahmoud
    Ammar, Ikhlass
    Ghodhbani, Refka
    Maqbool, Albia
    Saidani, Taoufik
    Ben Slimane, Jihane
    Kachoukh, Amani
    Kouki, Marouan
    Kallel, Mohamed
    Alsuwaylimi, Amjad A.
    Alenezi, Sami Mohammed
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2024, 14 (02) : 13584 - 13591
  • [37] ADL-YOLOv8: A Field Crop Weed Detection Model Based on Improved YOLOv8
    Jia, Zhiyu
    Zhang, Ming
    Yuan, Chang
    Liu, Qinghua
    Liu, Hongrui
    Qiu, Xiulin
    Zhao, Weiguo
    Shi, Jinlong
    AGRONOMY-BASEL, 2024, 14 (10):
  • [38] SD-YOLOv8: An Accurate Seriola dumerili Detection Model Based on Improved YOLOv8
    Liu, Mingxin
    Li, Ruixin
    Hou, Mingxin
    Zhang, Chun
    Hu, Jiming
    Wu, Yujie
    SENSORS, 2024, 24 (11)
  • [39] ESD-YOLOv8: An Efficient Solar Cell Fault Detection Model Based on YOLOv8
    Zhang, Lingyun
    Wu, Xu
    Liu, Zihan
    Yu, Panlin
    Yang, Mingfen
    IEEE ACCESS, 2024, 12 : 138801 - 138815
  • [40] Utilizing an Enhanced YOLOv8 Model for Fishery Detection
    Jiang, Hanyu
    Zhong, Jiacheng
    Ma, Fuyu
    Wang, Cheng
    Yi, Ruiwen
    FISHES, 2025, 10 (02)