Community knowledge graph abstraction for enhanced link prediction: A study on PubMed knowledge graph

被引:1
|
作者
Zhao, Yang [1 ]
Bollegala, Danushka [2 ]
Hirose, Shunsuke [1 ]
Jin, Yingzi [1 ]
Kozu, Tomotake [1 ]
机构
[1] Deloitte Touche Tohmatsu LLC, Deloitte Analyt R&D, 3-2-3 Marunouchi,Chiyoda Ku, Tokyo 1008360, Japan
[2] Univ Liverpool, Dept Comp Sci, Liverpool L69 3BX, England
关键词
PKG; CKG; KGE; Entity distance-based method; Link prediction; Backtracking process;
D O I
10.1016/j.jbi.2024.104725
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Objective: As new knowledge is produced at a rapid pace in the biomedical field, existing biomedical Knowledge Graphs (KGs) cannot be manually updated in a timely manner. Previous work in Natural Language Processing (NLP) has leveraged link prediction to infer the missing knowledge in general-purpose KGs. Inspired by this, we propose to apply link prediction to existing biomedical KGs to infer missing knowledge. Although Knowledge Graph Embedding (KGE) methods are effective in link prediction tasks, they are less capable of capturing relations between communities of entities with specific attributes (Fanourakis et al., 2023). Methods: To address this challenge, we proposed an entity distance-based method for abstracting a Community Knowledge Graph (CKG) from a simplified version of the pre-existing PubMed Knowledge Graph (PKG) (Xu et al., 2020). For link prediction on the abstracted CKG, we proposed an extension approach for the existing KGE models by linking the information in the PKG to the abstracted CKG. The applicability of this extension was proved by employing six well-known KGE models: TransE, TransH, DistMult, ComplEx, SimplE, and RotatE. Evaluation metrics including Mean Rank (MR), Mean Reciprocal Rank (MRR), and Hits@k were used to assess the link prediction performance. In addition, we presented a backtracking process that traces the results of CKG link prediction back to the PKG scale for further comparison. Results: Six different CKGs were abstracted from the PKG by using embeddings of the six KGE methods. The results of link prediction in these abstracted CKGs indicate that our proposed extension can improve the existing KGE methods, achieving a top-10 accuracy of 0.69 compared to 0.5 for TransE, 0.7 compared to 0.54 for TransH, 0.67 compared to 0.6 for DistMult, 0.73 compared to 0.57 for ComplEx, 0.73 compared to 0.63 for SimplE, and 0.85 compared to 0.76 for RotatE on their CKGs, respectively. These improved performances also highlight the wide applicability of the extension approach. Conclusion: This study proposed novel insights into abstracting CKGs from the PKG. The extension approach indicated enhanced performance of the existing KGE methods and has applicability. As an interesting future extension, we plan to conduct link prediction for entities that are newly introduced to the PKG.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Survey on Representation Learning Methods of Knowledge Graph for Link Prediction
    Du X.-Y.
    Liu M.-W.
    Shen L.-W.
    Peng X.
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (01): : 87 - 117
  • [22] Enhancing knowledge graph embedding by composite neighbors for link prediction
    Kai Wang
    Yu Liu
    Xiujuan Xu
    Quan Z. Sheng
    Computing, 2020, 102 : 2587 - 2606
  • [23] Knowledge graph embedding with inverse function representation for link prediction
    Zhang, Qianjin
    Xu, Yandan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [24] Assessing the Quality of a Knowledge Graph via Link Prediction Tasks
    Zhu, Ruiqi
    Bundy, Alan
    Wang, Fangrong
    Li, Xue
    Nuamah, Kuwabena
    Xu, Lei
    Mauceri, Stefano
    Pan, J. Z.
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING AND INFORMATION RETRIEVAL, NLPIR 2023, 2023, : 124 - 129
  • [25] Knowledge graph embedding by projection and rotation on hyperplanes for link prediction
    Thanh Le
    Ngoc Huynh
    Bac Le
    Applied Intelligence, 2023, 53 : 10340 - 10364
  • [26] HGCGE: hyperbolic graph convolutional networks-based knowledge graph embedding for link prediction
    Bao, Liming
    Wang, Yan
    Song, Xiaoyu
    Sun, Tao
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, : 661 - 687
  • [27] Knowledge graph embedding for data mining vs. knowledge graph embedding for link prediction - two sides of the same coin?
    Portisch, Jan
    Heist, Nicolas
    Paulheim, Heiko
    SEMANTIC WEB, 2022, 13 (03) : 399 - 422
  • [28] Comprehensive Analysis of Knowledge Graph Embedding Techniques Benchmarked on Link Prediction
    Ferrari, Ilaria
    Frisoni, Giacomo
    Italiani, Paolo
    Moro, Gianluca
    Sartori, Claudio
    ELECTRONICS, 2022, 11 (23)
  • [29] Structural context-based knowledge graph embedding for link prediction
    Zhang, Qianjin
    Wang, Ronggui
    Yang, Juan
    Xue, Lixia
    NEUROCOMPUTING, 2022, 470 : 109 - 120
  • [30] Link Prediction with Supervised Learning on an Industry 4.0 related Knowledge Graph
    Grangel-Gonzalez, Irlan
    Shah, Fasal
    2021 26TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2021,