Community knowledge graph abstraction for enhanced link prediction: A study on PubMed knowledge graph

被引:1
|
作者
Zhao, Yang [1 ]
Bollegala, Danushka [2 ]
Hirose, Shunsuke [1 ]
Jin, Yingzi [1 ]
Kozu, Tomotake [1 ]
机构
[1] Deloitte Touche Tohmatsu LLC, Deloitte Analyt R&D, 3-2-3 Marunouchi,Chiyoda Ku, Tokyo 1008360, Japan
[2] Univ Liverpool, Dept Comp Sci, Liverpool L69 3BX, England
关键词
PKG; CKG; KGE; Entity distance-based method; Link prediction; Backtracking process;
D O I
10.1016/j.jbi.2024.104725
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Objective: As new knowledge is produced at a rapid pace in the biomedical field, existing biomedical Knowledge Graphs (KGs) cannot be manually updated in a timely manner. Previous work in Natural Language Processing (NLP) has leveraged link prediction to infer the missing knowledge in general-purpose KGs. Inspired by this, we propose to apply link prediction to existing biomedical KGs to infer missing knowledge. Although Knowledge Graph Embedding (KGE) methods are effective in link prediction tasks, they are less capable of capturing relations between communities of entities with specific attributes (Fanourakis et al., 2023). Methods: To address this challenge, we proposed an entity distance-based method for abstracting a Community Knowledge Graph (CKG) from a simplified version of the pre-existing PubMed Knowledge Graph (PKG) (Xu et al., 2020). For link prediction on the abstracted CKG, we proposed an extension approach for the existing KGE models by linking the information in the PKG to the abstracted CKG. The applicability of this extension was proved by employing six well-known KGE models: TransE, TransH, DistMult, ComplEx, SimplE, and RotatE. Evaluation metrics including Mean Rank (MR), Mean Reciprocal Rank (MRR), and Hits@k were used to assess the link prediction performance. In addition, we presented a backtracking process that traces the results of CKG link prediction back to the PKG scale for further comparison. Results: Six different CKGs were abstracted from the PKG by using embeddings of the six KGE methods. The results of link prediction in these abstracted CKGs indicate that our proposed extension can improve the existing KGE methods, achieving a top-10 accuracy of 0.69 compared to 0.5 for TransE, 0.7 compared to 0.54 for TransH, 0.67 compared to 0.6 for DistMult, 0.73 compared to 0.57 for ComplEx, 0.73 compared to 0.63 for SimplE, and 0.85 compared to 0.76 for RotatE on their CKGs, respectively. These improved performances also highlight the wide applicability of the extension approach. Conclusion: This study proposed novel insights into abstracting CKGs from the PKG. The extension approach indicated enhanced performance of the existing KGE methods and has applicability. As an interesting future extension, we plan to conduct link prediction for entities that are newly introduced to the PKG.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Geography-Enhanced Link Prediction Framework for Knowledge Graph Completion
    Wang, Yashen
    Zhang, Huanhuan
    Xie, Haiyong
    KNOWLEDGE GRAPH AND SEMANTIC COMPUTING: KNOWLEDGE COMPUTING AND LANGUAGE UNDERSTANDING, 2019, 1134 : 198 - 210
  • [2] A Knowledge Selective Adversarial Network for Link Prediction in Knowledge Graph
    Hu, Kairong
    Liu, Hai
    Hao, Tianyong
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING (NLPCC 2019), PT I, 2019, 11838 : 171 - 183
  • [3] Granular concept-enhanced relational graph convolution networks for link prediction in knowledge graph
    Dai, Yuhao
    Yan, Mengyu
    Li, Jinhai
    INFORMATION SCIENCES, 2025, 694
  • [4] Fuzzy Search of Knowledge Graph with Link Prediction
    Ugai, Takanori
    PROCEEDINGS OF THE 10TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE GRAPHS (IJCKG 2021), 2021, : 121 - 125
  • [5] A Survey on Knowledge Graph Embeddings for Link Prediction
    Wang, Meihong
    Qiu, Linling
    Wang, Xiaoli
    SYMMETRY-BASEL, 2021, 13 (03):
  • [6] Embedding based Link Prediction for Knowledge Graph Completion
    Biswas, Russa
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 3221 - 3224
  • [7] Knowledge Graph Embedding for Link Prediction: A Comparative Analysis
    Rossi, Andrea
    Barbosa, Denilson
    Firmani, Donatella
    Matinata, Antonio
    Merialdo, Paolo
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2021, 15 (02)
  • [8] Comparing Knowledge Graph Representation Models for Link Prediction
    Chuanming Y.
    Zhengang Z.
    Lingge K.
    Data Analysis and Knowledge Discovery, 2021, 5 (11) : 29 - 44
  • [9] A Hierarchical Knowledge Graph Embedding Framework for Link Prediction
    Liu, Shuang
    Hou, Chengwang
    Meng, Jiana
    Chen, Peng
    Kolmanic, Simon
    IEEE ACCESS, 2024, 12 : 173338 - 173350
  • [10] Dual Graph Embedding for Object-Tag Link Prediction on the Knowledge Graph
    Li, Chenyang
    Chen, Xu
    Zhang, Ya
    Chen, Siheng
    Lv, Dan
    Wang, Yanfeng
    11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 283 - 290