A Review on Recent Advances and Perspectives in Hydrogel Polymer Electrolytes for Aqueous Zinc-Ion Batteries

被引:2
|
作者
Radjendirane, Aakash Carthick [1 ]
Sha, Faisal M. [1 ]
Ramasamy, Senthilkumar [2 ]
Rajaram, Rajamohan [3 ]
Angaiah, Subramania [1 ]
机构
[1] Pondicherry Univ, Ctr Nanosci & Technol, Madanjeet Sch Green Energy Technol, Electromat Res Lab, Pondicherry 605014, India
[2] Amrita Vishwa Vidyapeetham, Ctr Excellence Adv Mat & Green Technol, Amrita Sch Engn, Coimbatore 641112, India
[3] Yeungnam Univ, Sch Chem Engn, Gyongsan 38541, South Korea
关键词
electrode-electrolyte interfaces; hybrid hydrogels; hydrogel polymer electrolytes; ionic conductivities; zinc-ion batteries; CATHODE MATERIAL; GEL ELECTROLYTE; MEMBRANE ELECTROLYTE; POLY(ACRYLIC ACID); MOLECULAR-WEIGHT; BIO-ELECTROLYTE; ENERGY-STORAGE; HIGH-CAPACITY; PERFORMANCE; CELLULOSE;
D O I
10.1002/ente.202401105
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In comparison with solid polymer electrolytes, hydrogel polymer electrolytes are now a potentially suitable candidate for aqueous zinc-ion batteries (ZIBs). Generally, a hydrogel is mainly composed of a hydrophilic polymer network with a high water absorption propensity and the distinctive properties of being soft and wet, becoming a gel and solid polymer electrolyte in terms of ionic conductivity and mechanical properties. All these unique characteristics of electrolytes combine with an appropriate anode and cathode materials to deliver high safety, low cost, environmental friendliness, and excellent electrochemical performance in ZIB. Nevertheless, there is no comprehensive overview on the development of hydrogel electrolytes for ZIBs available. Therefore, this study focuses on the most recent breakthroughs in hydrogel-based polymer electrolytes for ZIBs. Further, a brief explanation of various types of hydrogel electrolytes as well as the electrochemical performance of different polymer-based electrolytes arediscussed. Finally, the challenges of hydrogel electrolytes for currently established Zn-ion batteries and the future research directions towards the high-performance flexibile ZIBs are explored. This review article has discussed the current state of the art in hydrogel electrolytes for zinc-ion batteries (ZIBs). Besides that, how hydrogel electrolytes are categorizedand their electrochemical performance towards ZIBsare also discussed in detail. Further, the challenges with the electrode- electrolyte interfacein all perspectives with future research directions are explored.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:34
相关论文
共 50 条
  • [31] Prussian blue analogues for aqueous zinc-ion batteries: Recent process and perspectives
    Wang, Jiayao
    Hu, Zewei
    Qi, Yuju
    Han, Chao
    Zhang, Kai
    Li, Weijie
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 221 : 302 - 320
  • [32] Recent advances in cathode materials for aqueous zinc-ion batteries: Mechanisms, materials, challenges, and opportunities
    Gull, Sanna
    Chen, Han-Yi
    MRS ENERGY & SUSTAINABILITY, 2022, 9 (02) : 248 - 280
  • [33] Zinc Metal-Free Anode Materials for High-Performance Aqueous Zinc-Ion Batteries: Recent Advances, Mechanisms, Challenges and Perspectives
    Liao, Yanxin
    Yang, Chun
    Bai, Jie
    Sun, Linghao
    Chen, Lingyun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (47): : 17044 - 17068
  • [34] Rechargeable aqueous zinc-ion batteries: Mechanism, design strategies and future perspectives
    Liu, Huanyan
    Wang, Jian-Gan
    You, Zongyuan
    Wei, Chunguang
    Kang, Feiyu
    Wei, Bingqing
    MATERIALS TODAY, 2021, 42 (42) : 73 - 98
  • [35] Recent advances of organic polymers for zinc-ion batteries
    Wang, Yue
    Li, Gaopeng
    Wang, Xinlu
    Deng, Jianxue
    Yu, Wensheng
    Liu, Guixia
    Yang, Ying
    Dong, Xiangting
    Wang, Jinxian
    Liu, Dongtao
    SUSTAINABLE ENERGY & FUELS, 2022, 6 (24) : 5439 - 5458
  • [36] Advances in zinc-ion structural batteries
    Lionetto, Francesca
    Arianpouya, Nasim
    Bozzini, Benedetto
    Maffezzoli, Alfonso
    Nematollahi, Mehrdad
    Mele, Claudio
    JOURNAL OF ENERGY STORAGE, 2024, 84
  • [37] Recent Advances in Graphene-based Materials for Zinc-ion Batteries
    Li, Le
    Yue, Shi
    Jia, Shaofeng
    Wang, Conghui
    Zhang, Dan
    CHEMICAL RECORD, 2024, 24 (04)
  • [38] Advances of Metal Oxide Composite Cathodes for Aqueous Zinc-Ion Batteries
    Kumankuma-Sarpong, James
    Guo, Wei
    Fu, Yongzhu
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2022, 3 (06):
  • [39] Tough Hydrogel Electrolytes for Anti-Freezing Zinc-Ion Batteries
    Yan, Yichen
    Duan, Sidi
    Liu, Bo
    Wu, Shuwang
    Alsaid, Yousif
    Yao, Bowen
    Nandi, Sunny
    Du, Yingjie
    Wang, Ta-Wei
    Li, Yuzhang
    He, Ximin
    ADVANCED MATERIALS, 2023, 35 (18)
  • [40] Recent Advances of Transition Metal Chalcogenides as Cathode Materials for Aqueous Zinc-Ion Batteries
    Liu, Ying
    Wu, Xiang
    NANOMATERIALS, 2022, 12 (19)