Deep Learning Prostate MRI Segmentation Accuracy and Robustness: A Systematic Review

被引:11
作者
Fassia, Mohammad-Kasim [1 ]
Balasubramanian, Adithya [2 ]
Woo, Sungmin [3 ]
Vargas, Hebert Alberto [3 ]
Hricak, Hedvig [3 ]
Konukoglu, Ender [4 ]
Becker, Anton S. [3 ]
机构
[1] New York Presbyterian Weill Cornell Med Ctr, Dept Radiol, 525 E 68th St, New York, NY 10065 USA
[2] New York Presbyterian Weill Cornell Med Ctr, Dept Urol, 525 E 68th St, New York, NY 10065 USA
[3] Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY USA
[4] Swiss Fed Inst Technol, Dept Biomed Imaging, Zurich, Switzerland
基金
美国国家卫生研究院;
关键词
Systematic review registration link; osf.io/nxaev; CONVOLUTIONAL NETWORK; U-NET;
D O I
10.1148/ryai.230138
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Purpose: To investigate the accuracy and robustness of prostate segmentation using deep learning across various training data sizes, MRI vendors, prostate zones, and testing methods relative to fellowship-trained diagnostic radiologists. Materials and Methods: In this systematic review, Embase, PubMed, Scopus, and Web of Science databases were queried for English-language articles using keywords and related terms for prostate MRI segmentation and deep learning algorithms dated to July 31, 2022. A total of 691 articles from the search query were collected and subsequently filtered to 48 on the basis of predefined inclusion and exclusion criteria. Multiple characteristics were extracted from selected studies, such as deep learning algorithm performance, MRI vendor, and training data- set features. The primary outcome was comparison of mean Dice similarity coefficient (DSC) for prostate segmentation for deep learning algorithms versus diagnostic radiologists. Results: Forty-eight studies were included. Most published deep learning algorithms for whole prostate gland segmentation (39 of 42 [93%]) had a DSC at or above expert level (DSC >= 0.86). The mean DSC was 0.79 +/- 0.06 (SD) for peripheral zone, 0.87 +/- 0.05 for transition zone, and 0.90 +/- 0.04 for whole prostate gland segmentation. For selected studies that used one major MRI vendor, the mean DSCs of each were as follows: General Electric (three of 48 studies), 0.92 +/- 0.03; Philips (four of 48 studies), 0.92 +/- 0.02; and Siemens (six of 48 studies), 0.91 +/- 0.03. Conclusion: Deep learning algorithms for prostate MRI segmentation demonstrated accuracy similar to that of expert radiologists despite varying parameters; therefore, future research should shift toward evaluating segmentation robustness and patient outcomes across diverse clinical settings.
引用
收藏
页数:12
相关论文
共 63 条
[1]   A review of uncertainty quantification in deep learning: Techniques, applications and challenges [J].
Abdar, Moloud ;
Pourpanah, Farhad ;
Hussain, Sadiq ;
Rezazadegan, Dana ;
Liu, Li ;
Ghavamzadeh, Mohammad ;
Fieguth, Paul ;
Cao, Xiaochun ;
Khosravi, Abbas ;
Acharya, U. Rajendra ;
Makarenkov, Vladimir ;
Nahavandi, Saeid .
INFORMATION FUSION, 2021, 76 :243-297
[2]   Dilated Volumetric Network: an Enhanced Fully Convolutional Network for Volumetric Prostate Segmentation from Magnetic Resonance Imaging [J].
Aman Agarwal ;
Mishra, Aditya ;
Basavarajaiah, Madhushree ;
Sharma, Priyanka ;
Tanwar, Sudeep .
PATTERN RECOGNITION AND IMAGE ANALYSIS, 2021, 31 (02) :228-239
[3]   Optimisation of 2D U-Net Model Components for Automatic Prostate Segmentation on MRI [J].
Astono, Indriani P. ;
Welsh, James S. ;
Chalup, Stephan ;
Greer, Peter .
APPLIED SCIENCES-BASEL, 2020, 10 (07)
[4]   Segmentation of the Prostate Transition Zone and Peripheral Zone on MR Images with Deep Learning [J].
Bardis, Michelle ;
Houshyar, Roozbeh ;
Chantaduly, Chanon ;
Tran-Harding, Karen ;
Ushinsky, Alexander ;
Chahine, Chantal ;
Rupasinghe, Mark ;
Chow, Daniel ;
Chang, Peter .
RADIOLOGY-IMAGING CANCER, 2021, 3 (03)
[5]   Repeatability of diffusion-weighted MRI of the prostate using whole lesion ADC values, skew and histogram analysis [J].
Barrett, Tristan ;
Lawrence, Edward M. ;
Priest, Andrew N. ;
Warren, Anne Y. ;
Gnanapragasam, Vincent J. ;
Gallagher, Ferdia A. ;
Sala, Evis .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 110 :22-29
[6]   Variability of manual segmentation of the prostate in axial T2-weighted MRI: A multi-reader study [J].
Becker, Anton S. ;
Chaitanya, Krishna ;
Schawkat, Khoschy ;
Muehlematter, Urs J. ;
Hoetker, Andreas M. ;
Konukoglu, Ender ;
Donati, Olivio F. .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 121
[7]   Early Detection of Prostate Cancer: AUA Guideline [J].
Carter, H. Ballentine ;
Albertsen, Peter C. ;
Barry, Michael J. ;
Etzioni, Ruth ;
Freedland, Stephen J. ;
Greene, Kirsten Lynn ;
Holmberg, Lars ;
Kantoff, Philip ;
Konety, Badrinath R. ;
Murad, Mohammad Hassan ;
Penson, David F. ;
Zietman, Anthony L. .
JOURNAL OF UROLOGY, 2013, 190 (02) :419-426
[8]   Semi-supervised task-driven data augmentation for medical image segmentation [J].
Chaitanya, Krishna ;
Karani, Neerav ;
Baumgartner, Christian F. ;
Erdil, Ertunc ;
Becker, Anton ;
Donati, Olivio ;
Konukoglu, Ender .
MEDICAL IMAGE ANALYSIS, 2021, 68
[9]   Fully automated prostate whole gland and central gland segmentation on MRI using holistically nested networks with short connections [J].
Cheng, Ruida ;
Lay, Nathan ;
Roth, Holger R. ;
Turkbey, Baris ;
Jin, Dakai ;
Gandler, William ;
McCreedy, Evan S. ;
Pohida, Tom ;
Pinto, Peter ;
Choyke, Peter ;
McAuliffe, Matthew J. ;
Summers, Ronald M. .
JOURNAL OF MEDICAL IMAGING, 2019, 6 (02)
[10]   Automatic magnetic resonance prostate segmentation by deep learning with holistically nested networks [J].
Cheng R. ;
Roth H.R. ;
Lay N. ;
Lu L. ;
Turkbey B. ;
Gandler W. ;
McCreedy E.S. ;
Pohida T. ;
Pinto P.A. ;
Choyke P. ;
McAuliffe M.J. ;
Summers R.M. .
Journal of Medical Imaging, 2017, 4 (04)