Attention-based multi-fidelity machine learning model for fractional flow reserve assessment

被引:2
作者
Yang, Haizhou [1 ]
Nallamothu, Brahmajee K. [2 ]
Figueroa, C. Alberto [3 ,4 ]
Garikipati, Krishna [1 ,5 ,6 ,7 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Surg, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Michigan Inst Computat Discovery & Engn, Ann Arbor, MI 48109 USA
[7] Univ Michigan, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Coronary artery disease; Fractional flow reserve; Machine learning; Multi-fidelity; Gradient-based attention; Uncertainty quantification; QUANTIFICATION; ANGIOGRAPHY;
D O I
10.1016/j.cma.2024.117338
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Coronary Artery Disease (CAD) is one of the most common forms of heart disease, caused by a buildup of atherosclerotic plaque in the coronary arteries. When this buildup is extensive, it can result in obstructions in the lumen of the blood vessels (known as stenosis) that lead to insufficient delivery of essential molecules like oxygen to the heart. Fractional Flow Reserve (FFR), defined as the ratio of pressures distal and proximal to the stenosis, is the physiologic gold standard for assessing the severity of CAD in the cardiac catheterization laboratory and relies upon the placement of an invasive coronary wire. Despite its strong diagnostic value, invasive FFR assessment is underutilized due to its cost, time-consuming nature, technique- dependent variability, and the small potential of increased risk to the patient. In this study, an attention-based multi-fidelity machine learning model (AttMulFid) is proposed for efficient and accurate virtual FFR (vFFR) assessment, including uncertainty quantification, without the use of an invasive coronary wire. Within AttMulFid, an autoencoder is used to select geometric features from the coronary arteries, with additional attention to the stenosis region. A convolutional neural network (feature fusion U-Net) combines multi-fidelity data, geometric features, and boundary conditions to produce accurate estimates of vFFR. We present results that demonstrate the good performance of AttMulFid against CFD FFR data, as well as in vivo, invasive FFR assessment from patients. Our results also show that the selected geometric features learned by the autoencoder can accurately represent the entire geometry, with greater attention on key features such as stenosis. AttMulFid thus presents itself as a feasible approach for non-invasive, rapid, and accurate vFFR assessment.
引用
收藏
页数:16
相关论文
共 40 条
[1]   A review of uncertainty quantification in deep learning: Techniques, applications and challenges [J].
Abdar, Moloud ;
Pourpanah, Farhad ;
Hussain, Sadiq ;
Rezazadegan, Dana ;
Liu, Li ;
Ghavamzadeh, Mohammad ;
Fieguth, Paul ;
Cao, Xiaochun ;
Khosravi, Abbas ;
Acharya, U. Rajendra ;
Makarenkov, Vladimir ;
Nahavandi, Saeid .
INFORMATION FUSION, 2021, 76 :243-297
[2]  
Alastruey J., 2012, 11 INT C PRESSURE SU, pp. 401, DOI DOI 10.1016/J.JCP.2017.06.020
[3]   Machine learning-based coronary artery disease diagnosis: A comprehensive review [J].
Alizadehsani, Roohallah ;
Abdar, Moloud ;
Roshanzamir, Mohamad ;
Khosravi, Abbas ;
Kebria, Parham M. ;
Khozeimeh, Fahime ;
Nahavandi, Saeid ;
Sarrafzadegan, Nizal ;
Acharya, U. Rajendra .
COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 111
[4]   CRIMSON: An open-source software framework for cardiovascular integrated modelling and simulation [J].
Arthurs, Christopher J. ;
Khlebnikov, Rostislav ;
Melville, Alex ;
Marcan, Marija ;
Gomez, Alberto ;
Dillon-Murphy, Desmond ;
Cuomo, Federica ;
Silva Vieira, Miguel ;
Schollenberger, Jonas ;
Lynch, Sabrina R. ;
Tossas-Betancourt, Christopher ;
Iyer, Kritika ;
Hopper, Sara ;
Livingston, Elizabeth ;
Youssefi, Pouya ;
Noorani, Alia ;
Ben Ahmed, Sabrina ;
Nauta, Foeke J. H. ;
van Bakel, Theodorus M. J. ;
Ahmed, Yunus ;
van Bakel, Petrus A. J. ;
Mynard, Jonathan ;
Di Achille, Paolo ;
Gharahi, Hamid ;
Lau, Kevin D. ;
Filonova, Vasilina ;
Aguirre, Miquel ;
Nama, Nitesh ;
Xiao, Nan ;
Baek, Seungik ;
Garikipati, Krishna ;
Sahni, Onkar ;
Nordsletten, David ;
Figueroa, C. Alberto .
PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (05)
[5]   Fractional Flow Reserve Computed from Noninvasive CT Angiography Data: Diagnostic Performance of an On-Site Clinician-operated Computational Fluid Dynamics Algorithm [J].
Coenen, Adriaan ;
Lubbers, Marisa M. ;
Kurata, Akira ;
Kono, Atsushi ;
Dedic, Admir ;
Chelu, Raluca G. ;
Dijkshoorn, Marcel L. ;
Gijsen, Frank J. ;
Ouhlous, Mohamed ;
van Geuns, Robert-Jan M. ;
Nieman, Koen .
RADIOLOGY, 2015, 274 (03) :674-683
[6]   Invasive imaging - Fractional flow reserve: a review [J].
De Bruyne, B. ;
Sarma, J. .
HEART, 2008, 94 (07) :949-959
[7]   Accuracy of Fractional Flow Reserve Derived From Coronary Angiography [J].
Fearon, William F. ;
Achenbach, Stephan ;
Engstrom, Thomas ;
Assali, Abid ;
Shlofmitz, Richard ;
Jeremias, Allen ;
Fournier, Stephane ;
Kirtane, Ajay J. ;
Kornowski, Ran ;
Greenberg, Gabriel ;
Jubeh, Rami ;
Kolansky, Daniel M. ;
McAndrew, Thomas ;
Dressler, Ovidiu ;
Maehara, Akiko ;
Matsumura, Mitsuaki ;
Leon, Martin B. ;
De Bruyne, Bernard .
CIRCULATION, 2019, 139 (04) :477-484
[8]   Machine learning augmented reduced-order models for FFR-prediction [J].
Fossan, Fredrik E. ;
Muller, Lucas O. ;
Sturdy, Jacob ;
Braten, Anders T. ;
Jorgensen, Arve ;
Wiseth, Rune ;
Hellevik, Leif R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 384 (384)
[9]  
Gal Y, 2016, PR MACH LEARN RES, V48
[10]   Ensemble deep learning: A review [J].
Ganaie, M. A. ;
Hu, Minghui ;
Malik, A. K. ;
Tanveer, M. ;
Suganthan, P. N. .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 115