Enhancing Interpretability in Machine Learning: A Focus on Genetic Network Programming, Its Variants, and Applications

被引:13
作者
Roshanzamir, Mohamad [1 ]
Alizadehsani, Roohallah [2 ]
Moravvej, Seyed Vahid [3 ]
Joloudari, Javad Hassannataj [4 ]
Alinejad-Rokny, Hamid [5 ]
Gorriz, Juan M. [6 ]
机构
[1] Fasa Univ, Fac Engn, Dept Comp Engn, Fasa, Iran
[2] Deakin Univ, Intelligent Syst Res & Innovat IISRI, Geelong, Vic, Australia
[3] Isfahan Univ Technol, Dept Elect & Comp Engn, Esfahan, Iran
[4] Tech & Vocat Univ TVU, Dept Comp Engn, Tehran, Iran
[5] UNSW Sydney, Grad Sch Biomed Engn, BioMed Machine Learning Lab, Sydney, NSW 2052, Australia
[6] Univ Granada, Dept Signal Theory Networking & Commun, Granada, Spain
来源
ARTIFICIAL INTELLIGENCE FOR NEUROSCIENCE AND EMOTIONAL SYSTEMS, PT I, IWINAC 2024 | 2024年 / 14674卷
关键词
Genetic Programming; Genetic Network Programming; Evolutionary Computing;
D O I
10.1007/978-3-031-61140-7_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In current machine learning research, deep learning methodologies have become the prevalent approach across various domains, including decision-making processes. However, the interpretability of solutions generated by these algorithms remains a significant challenge, as these models do not inherently prioritize explainability. This lack of interpretability hampers the analysis of decision-making rationales. One potential remedy to this issue is the employment of Genetic Network Programming (GNP), a method within the evolutionary computing paradigm, known for its ability to generate more interpretable solutions. This study provides a concise overview of GNP, exploring its modifications and applications to demonstrate its utility in addressing the interpretability challenge in machine learning algorithms.
引用
收藏
页码:98 / 107
页数:10
相关论文
共 19 条
[1]  
Chen Y., 2009, Machine Learning
[2]   Investigating Genetic Network Programming for Multiple Nest Foraging [J].
Foss, Fredrik ;
Stenrud, Truls ;
Haddow, Pauline C. .
2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
[3]  
Gonzales E, 2007, GECCO 2007: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, P1512
[4]   Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends [J].
Gorriz, J. M. ;
Avarez-Illan, I. ;
Avarez-Marquina, A. ;
Arco, J. E. ;
Atzmueller, M. ;
Ballarini, F. ;
Barakova, E. ;
Bologna, G. ;
Bonomini, P. ;
Castellanos-Dominguez, G. ;
Castillo-Barnes, D. ;
Cho, S. B. ;
Contreras, R. ;
Cuadra, J. M. ;
Dominguez, E. ;
Dominguez-Mateos, F. ;
Duro, R. J. ;
Elizondo, D. ;
Fernandez-Caballero, A. ;
Fernandez-Jover, E. ;
Formoso, M. A. ;
Gallego-Molina, N. J. ;
Gamazo, J. ;
Gonzalez, J. Garcia ;
Garcia-Rodriguez, J. ;
Garre, C. ;
Garrigos, J. ;
Gomez-Rodellar, A. ;
Gomez-Vilda, P. ;
Grana, M. ;
Guerrero-Rodriguez, B. ;
Hendrikse, S. C. F. ;
Jimenez-Mesa, C. ;
Jodra-Chuan, M. ;
Julian, V. ;
Kotz, G. ;
Kutt, K. ;
Leming, M. ;
de Lope, J. ;
Macas, B. ;
Marrero-Aguiar, V. ;
Martinez, J. J. ;
Martinez-Murcia, F. J. ;
Martinez-Tomas, R. ;
Mekyska, J. ;
Nalepa, G. J. ;
Novais, P. ;
Orellana, D. ;
Ortiz, A. ;
Palacios-Alonso, D. .
INFORMATION FUSION, 2023, 100
[5]  
Hirasawa K, 2001, IEEE C EVOL COMPUTAT, P1276, DOI 10.1109/CEC.2001.934337
[6]  
Katagiri H., 2001, P 3 ANN C GEN EV COM, P179
[7]  
Li X., 2010, IEEE C EV COMP, P1
[8]   Niching genetic network programming with rule accumulation for decision making: An evolutionary rule-based approach [J].
Li, Xianneng ;
Yang, Meihua ;
Wu, Shizhe .
EXPERT SYSTEMS WITH APPLICATIONS, 2018, 114 :374-387
[9]  
Li XN, 2014, 2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), P1808, DOI 10.1109/CEC.2014.6900290
[10]   A Learning Classifier System Based on Genetic Network Programming [J].
Li, Xianneng ;
Hirasawa, Kotaro .
2013 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2013), 2013, :1323-1328