A reduction procedure for determining exact solutions of second order hyperbolic equations

被引:1
作者
Manganaro, Natale [1 ]
Rizzo, Alessandra [1 ]
机构
[1] Univ Messina, Dept Math Comp Phys & Earth Sci, MIFT, V le F Stagno Alcontres 31, I-98166 Messina, Italy
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2024年 / 138卷
关键词
Second order hyperbolic equations; Intermediate integrals; Exact solutions; EVOLUTION-EQUATIONS;
D O I
10.1016/j.cnsns.2024.108240
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop a systematic reduction procedure for determining intermediate integrals of second order hyperbolic equations so that exact solutions of the second order PDEs under interest can be obtained by solving first order PDEs. We give some conditions in order that such a procedure holds and, in particular, we characterize classes of linear second order hyperbolic equations for which the general solution can be found.
引用
收藏
页数:12
相关论文
共 32 条
[1]   Bounded solutions of second order semilinear evolution equations and applications to the telegraph equation [J].
Alonso, JM ;
Mawhin, J ;
Ortega, R .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (01) :49-63
[2]   Invertible mappings of nonlinear PDEs to linear PDEs through admitted conservation laws [J].
Anco, Stephen ;
Bluman, George ;
Wolf, Thomas .
ACTA APPLICANDAE MATHEMATICAE, 2008, 101 (1-3) :21-38
[3]   GENERALIZED RIEMANN WAVES AND THEIR ADJOINMENT THROUGH A SHOCK WAVE [J].
Chaiyasena, A. ;
Worapitpong, W. ;
Meleshko, S., V .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2018, 13 (02)
[4]   Differential constraints and exact solutions for the ET6 model [J].
Curro, Carmela ;
Manganaro, Natale .
RICERCHE DI MATEMATICA, 2019, 68 (01) :179-193
[5]   EXACT SOLUTIONS AND WAVE INTERACTIONS FOR A VISCOELASTIC MEDIUM [J].
Curro, Carmela ;
Manganaro, Natale .
ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2018, 96 (01)
[6]   EXACT SOLUTIONS IN IDEAL CHROMATOGRAPHY VIA DIFFERENTIAL CONSTRAINTS METHOD [J].
Curro, Carmela ;
Fusco, Domenico ;
Manganaro, Natale .
ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2015, 93 (01)
[7]  
Fomin VM, 1973, CHISLENNYE METODY ME, V4, P39
[8]   Group analysis and exact solutions of a class of variable coefficient nonlinear telegraph equations [J].
Huang, Ding-Jiang ;
Ivanova, Nataliya M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)
[9]   Riemann problems for the nonhomogeneous Aw-Rascle model [J].
Jannelli, Alessandra ;
Manganaro, Natale ;
Rizzo, Alessandra .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 118
[10]  
K Pani AMIYA., 2004, Int. J. Numer. Anal. Model, V1, P111