Maximizing the Index of Signed Complete Graphs Containing a Spanning Tree with k Pendant Vertices

被引:1
作者
Li, Dan [1 ]
Yan, Minghui [1 ]
Teng, Zhaolin [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
基金
中国国家自然科学基金;
关键词
signed complete graph; index; pendant vertices; spanning tree; SPECTRAL-RADIUS; LEAST EIGENVALUE; BICYCLIC GRAPHS; N-VERTICES; BALANCE; CACTI;
D O I
10.3390/axioms13080565
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A signed graph Sigma=(G,sigma) consists of an underlying graph G=(V,E) with a sign function sigma:E ->{-1,1}. Let A(Sigma) be the adjacency matrix of Sigma and lambda(1)(Sigma) denote the largest eigenvalue (index) of Sigma. Define (K-n,H-) as a signed complete graph whose negative edges induce a subgraph H. In this paper, we focus on the following question: which spanning tree T with a given number of pendant vertices makes the lambda(1)(A(Sigma)) of the unbalanced (K-n,T-) as large as possible? To answer the question, we characterize the extremal signed graph with maximum lambda(1)(A(Sigma)) among graphs of type (K-n,T-).
引用
收藏
页数:16
相关论文
共 27 条
[1]   SIGNED COMPLETE GRAPHS WITH MAXIMUM INDEX [J].
Akbari, Saieed ;
Dalvandi, Soudabeh ;
Heydari, Farideh ;
Maghasedi, Mohammad .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (02) :393-403
[2]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[3]   Unbalanced signed graphs with extremal spectral radius or index [J].
Brunetti, Maurizio ;
Stanic, Zoran .
COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (03)
[4]   STRUCTURAL BALANCE - A GENERALIZATION OF HEIDER THEORY [J].
CARTWRIGHT, D ;
HARARY, F .
PSYCHOLOGICAL REVIEW, 1956, 63 (05) :277-293
[5]   A COMBINATORIAL PROOF OF THE ALL MINORS MATRIX TREE THEOREM [J].
CHAIKEN, S .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1982, 3 (03) :319-329
[6]  
Chen F., 2024, Appl. Math. Comput, V477, P128814
[7]   Complete signed graphs with largest maximum or smallest minimum eigenvalue [J].
Ghorbani, Ebrahim ;
Majidi, Arezoo .
DISCRETE MATHEMATICS, 2024, 347 (04)
[8]   Signed graphs with maximal index [J].
Ghorbani, Ebrahim ;
Majidi, Arezoo .
DISCRETE MATHEMATICS, 2021, 344 (08)
[9]   The spectral radius of unicyclic and bicyclic graphs with n vertices and k pendant vertices [J].
Guo, SG .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 408 :78-85
[10]  
Harary F., 1953, Mich Math. J., V2, P143