Attention Head Interactive Dual Attention Transformer for Hyperspectral Image Classification

被引:1
作者
Shi, Cuiping [1 ,2 ]
Yue, Shuheng [2 ]
Wang, Liguo [3 ]
机构
[1] Huzhou Univ, Coll Informat Engn, Huzhou 313000, Peoples R China
[2] Qiqihar Univ, Dept Commun Engn, Qiqihar 161000, Peoples R China
[3] Dalian Nationalities Univ, Coll Informat & Commun Engn, Dalian 116000, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Transformers; Hyperspectral imaging; Data mining; Convolution; Head; Semantics; Attention head; hyperspectral image classification (HSIC); multihead attention; transformer; BAND SELECTION; NETWORKS;
D O I
10.1109/TGRS.2024.3427769
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In recent years, transformer has attracted the attention of many researchers in the field of remote sensing due to its ability to model global information. However, it is difficult to extract local features such as textures and edges of images, thereby limiting the performance of transformer-based hyperspectral image classification (HSIC). Currently, most existing transformer models for HSIC improve their performance by combining the powerful feature extraction ability of convolution, which also introduces a large number of trainable parameters and increases model complexity. To address this issue, this article proposes a dual attention transformer for attention head interaction (DAHIT) for HSIC. First, a spatial local bias module (SLBM) was designed in the spatial branch, which introduces local priors to extract local features effectively without introducing numerous trainable parameters. Then, an attention head interaction module (AHIM) was proposed, which can make the interaction of information obtained by different attention heads. Finally, a diagonal mask multiscale dual attention module (DAM) was constructed in the spectral branch to enhance the attention to the correlation among different spectral bands through diagonal masks and then to extract features at different scales through feature vectors. Through a series of experiments, the proposed DAHIT is evaluated on four commonly used HSI datasets. The experimental results show that compared with other advanced methods, the proposed DAHIT method exhibits excellent classification performance, demonstrating the effectiveness of the proposed method in HSIC.
引用
收藏
页数:20
相关论文
共 58 条
[1]   Hyperspectral Image Classification Based on Deep Attention Graph Convolutional Network [J].
Bai, Jing ;
Ding, Bixiu ;
Xiao, Zhu ;
Jiao, Licheng ;
Chen, Hongyang ;
Regan, Amelia C. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[2]   Constrained band selection for hyperspectral imagery [J].
Chang, Chein-I ;
Wang, Su .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (06) :1575-1585
[3]   Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks [J].
Chen, Yushi ;
Jiang, Hanlu ;
Li, Chunyang ;
Jia, Xiuping ;
Ghamisi, Pedram .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10) :6232-6251
[4]   Weighted Feature Fusion of Convolutional Neural Network and Graph Attention Network for Hyperspectral Image Classification [J].
Dong, Yanni ;
Liu, Quanwei ;
Du, Bo ;
Zhang, Liangpei .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 :1559-1572
[5]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[6]   Geometric-Spectral Reconstruction Learning for Multi-Source Open-Set Classification With Hyperspectral and LiDAR Data [J].
Fang, Leyuan ;
Zhu, Dingshun ;
Yue, Jun ;
Zhang, Bob ;
He, Min .
IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (10) :1892-1895
[7]   Advances in Spectral-Spatial Classification of Hyperspectral Images [J].
Fauvel, Mathieu ;
Tarabalka, Yuliya ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn ;
Tilton, James C. .
PROCEEDINGS OF THE IEEE, 2013, 101 (03) :652-675
[8]  
Gao L., 2021, IEEE Transactions on Geoscience and Remote Sensing, DOI [DOI 10.1109/TGRS.2021.3130716, 10.1109/TGRS.2021.3130716]
[9]  
Gao Y. Zhang, 2023, IEEE Trans. Geosci. Remote Sens., V61
[10]  
Gao Y. Zhang, 2023, IEEE Trans. Geosci. Remote Sens., V61, DOI [10.1109/TGRS.2023.3258061.50H, DOI 10.1109/TGRS.2023.3258061.50H]