Correlating Cu dopant concentration, optoelectronic properties, and photocatalytic activity of ZnO nanostructures: experimental and theoretical insights

被引:0
作者
Esbergenova, Amugul [1 ,2 ]
Hojamberdiev, Mirabbos [3 ]
Mamatkulov, Shavkat [4 ]
Jalolov, Rivojiddin [2 ,5 ]
Kong, Debin [6 ]
Ruzimuradov, Olim [4 ,7 ]
Shaislamov, Ulugbek [1 ,2 ]
机构
[1] Natl Univ Uzbekistan, Ctr Dev Nanotechnol, Univ str 4, Tashkent 100174, Uzbekistan
[2] Natl Univ Uzbekistan, Dept Phys, Univ str 4, Tashkent 100174, Uzbekistan
[3] Tech Univ Berlin, Inst Chem, Str 17 Juni 135, D-10623 Berlin, Germany
[4] Acad Sci Uzbek, Inst Mat Sci, Chingiz Aytmatov 2b, Tashkent 100084, Uzbekistan
[5] Acad Sci Uzbek, Arifov Inst Ion Plasma & Laser Technol, Lab Opt & Elect Proc Nanostruct Mat, Tashkent 100125, Uzbekistan
[6] China Univ Petr East China, Coll New Energy, Res Ctr Adv Chem Engn & Energy Mat, Qingdao 266580, Peoples R China
[7] Turin Polytech Univ Tashkent, Dept Nat & Math Sci, Kichik Halqa Yoli 17, Tashkent 100095, Uzbekistan
关键词
ZnO; doping; copper; photocatalysis; nanostructures; density functional theory; DOPED ZNO; DEGRADATION ACTIVITY; OPTICAL-PROPERTIES; PHOTOLUMINESCENCE; NANOPARTICLES; TRANSITION; GROWTH; DEPOSITION; ENERGIES; NANORODS;
D O I
10.1088/1361-6528/ad750b
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The photocatalytic activity of photocatalysts can be enhanced by cation doping, and the dopant concentration plays a key role in achieving high efficiency. This study explores the impact of copper (Cu) doping at concentrations ranging from 0% to 10% on the microstructural, optical, electronic, and photocatalytic properties of zinc oxide (ZnO) nanostructures. The x-ray diffraction analysis shows a non-linear alteration in the lattice parameters with increasing the Cu content and the formation of CuO as a secondary phase at the Cu concentration of >3%. Density functional theory calculations provide insights into the change in the electronic structures of ZnO induced by Cu doping, leading to the formation of localized d electronic levels above the valence band maximum. The modulation of the electronic structure of ZnO by Cu doping facilitates the visible light absorption via O 2p -> Cu 3d and Cu 3d -> Zn 2p transitions. Photoluminescence spectroscopy reveals a quenching of the defect-related emission peak at approximately 570 nm for all Cu-doped ZnO nanostructures, indicating a reduction in the structural and other defects. The photocatalytic activity tests confirm that the ZnO nanostructures doped with 3% Cu exhibit the highest efficiency compared to other samples due to the suitable band-edge position and visible light absorption.
引用
收藏
页数:15
相关论文
共 56 条
[1]   Effect of different pH values on growth solutions for the ZnO nanostructures [J].
Abdulrahman, Ahmed F. ;
Ahmed, Sabah M. ;
Hamad, Samir M. ;
Almessiere, Munirah A. ;
Ahmed, Naser M. ;
Sajadi, S. Mohammad .
CHINESE JOURNAL OF PHYSICS, 2021, 71 :175-189
[2]   Evidence of progressive Fe2+ to Fe3+oxidation in Fe2+-doped ZnO nanoparticles [J].
Aragon, F. F. H. ;
Villegas-Lelovsky, L. ;
Parizaka, J. G. ;
Zela, E. G. ;
Bendezu, R. ;
Gallegos, R. O. ;
Pacheco-Salazar, D. G. ;
da Silva, S. W. ;
Cohen, R. ;
Nagamine, L. C. C. M. ;
Coaquira, J. A. H. ;
Morais, P. C. .
MATERIALS ADVANCES, 2023, 4 (05) :1389-1402
[3]   Role of ionic radii and electronegativity of co-dopants (Co, Ni and Cr) on properties of Cu doped ZnO and evaluation of In-vitro cytotoxicity [J].
Ashokkumar, M. ;
Muthusamy, C. .
SURFACES AND INTERFACES, 2022, 30
[4]   Photocatalytic Degradation of Methylene Blue Using N-Doped ZnO/ Carbon Dot (N-ZnO/CD) Nanocomposites Derived from Organic Soybean [J].
Ayu, Dinda Gusti ;
Gea, Saharman ;
Andriayani, Dewi Junita ;
Telaumbanua, Dewi Junita ;
Piliang, Averroes Fazlur Rahman ;
Harahap, Mahyuni ;
Yen, Zhihao ;
Goei, Ronn ;
Tok, Alfred Iing Yoong .
ACS OMEGA, 2023, 8 (17) :14965-14984
[5]   Visible light sensitive Cu doped ZnO: Facile synthesis, characterization and high photocatalytic response [J].
Chandekar, Kamlesh, V ;
Shkir, Mohd ;
Al-Shehri, Badria M. ;
AlFaify, S. ;
Halor, Rajendra G. ;
Khan, Aslam ;
Al-Namshah, Khadijah S. ;
Hamdy, Mohamed S. .
MATERIALS CHARACTERIZATION, 2020, 165
[6]   Enhancing the quasi-theoretical photocurrent density of ZnO nanorods via a lukewarm hydrothermal method [J].
Chen, Ying-Chu ;
Wu, Zhi-Jie ;
Hsu, Yu-Kuei .
NANOSCALE, 2020, 12 (23) :12292-12299
[7]   Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structure [J].
Djurisic, AB ;
Choy, WCH ;
Roy, VAL ;
Leung, YH ;
Kwong, CY ;
Cheah, KW ;
Rao, TKG ;
Chan, WK ;
Lui, HT ;
Surya, C .
ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (09) :856-864
[8]   Interlinking the Fe doping concentration, optoelectronic properties, and photocatalytic performance of ZnO nanostructures [J].
Esbergenova, Amugul ;
Hojamberdiev, Mirabbos ;
Kadirova, Zukhra C. ;
Sugai, Yuichi ;
Mamatkulov, Shavkat ;
Jalolov, Rivojiddin ;
Kong, Debin ;
Qin, Xin ;
Daminova, Shahlo S. ;
Ruzimuradov, Olim ;
Shaislamov, Ulugbek .
CURRENT APPLIED PHYSICS, 2024, 67 :18-29
[9]   Understanding the effect of morphological change on photocatalytic activity of ZnO nanostructures and reaction mechanism by molecular dynamics [J].
Esbergenova, Amugul ;
Yusupov, Maksudbek ;
Ghasemitarei, Maryam ;
Jalolov, Rivojiddin ;
Hojamberdiev, Mirabbos ;
Shaislamov, Ulugbek .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 677
[10]   First-principle calculation of the electronic structures and optical properties of the metallic and nonmetallic elements-doped ZnO on the basis of photocatalysis [J].
Feng, Chang ;
Chen, Zhuoyuan ;
Li, Weibing ;
Zhang, Fan ;
Li, Xiangbo ;
Xu, Likun ;
Sun, Mingxian .
PHYSICA B-CONDENSED MATTER, 2019, 555 :53-60