Lithium-ion battery health state and remaining useful life prediction based on hybrid model MFE-GRU-TCA

被引:7
|
作者
Wang, Xiaohua [1 ]
Dai, Ke [1 ]
Hu, Min [1 ]
Ni, Nanbing [1 ]
机构
[1] Hefei Univ Technol, Sch Comp Sci & Informat Engn, Anhui Prov Key Lab Affect Comp & Adv Intelligent M, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Multi-feature extraction; Temporal attention; State of health; Gated recurrent units; PROGNOSTICS;
D O I
10.1016/j.est.2024.112442
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate prediction of battery state of health (SOH) and remaining useful life (RUL) is crucial for reducing the risk of energy storage battery failures and intelligent management of energy storage power stations. Currently, most existing research methods only consider capacity as the input for their models, disregarding the interconnectedness of internal battery feature data. A model based on MFE-GRU-TCA (Multi-Feature Extraction and Temporal Convolutional Attention Gated Recurrent Units) is proposed to improve the accuracy of lithium-ion battery SOH and RUL prediction. The MFE module is used to extract data features from multiple charge/discharge cycles of lithium-ion batteries that have undergone data selection and data scaling, and then concatenating them with overall features from the cycles. The GRU module is then used to capture the longterm dependencies in the sequential data. The TCA module is used to better represent the decay trend of the capacity series and mitigate the influence of capacity regeneration phenomenon. Moreover, the TCA module leverages temporal convolutional attention to focus on relevant temporal states and produce more accurate predictions. Extensive experiments were conducted on the NASA and CALCE datasets, and comparisons were made with existing methods. The experimental results demonstrate that the proposed model achieves more accurate predictions of lithium-ion battery SOH and RUL. The Root Mean Square Errors (RMSE) on the NASA dataset and CALCE dataset are below 0.832% and 0.614% respectively.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A rest-time-based prognostic model for remaining useful life prediction of lithium-ion battery
    Deng, Liming
    Shen, Wenjing
    Wang, Hongfei
    Wang, Shuqiang
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (06): : 2035 - 2046
  • [22] Prediction for the Remaining Useful Life of Lithium-ion Battery Based on PCA-NARX
    Pang X.-Q.
    Wang Z.-Q.
    Zeng J.-C.
    Jia J.-F.
    Shi Y.-H.
    Wen J.
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2019, 39 (04): : 406 - 412
  • [23] Prediction of Remaining Useful Life of the Lithium-Ion Battery Based on Improved Particle Filtering
    Wu, Tiezhou
    Zhao, Tong
    Xu, Siyun
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [24] Lithium-ion battery remaining useful life prediction based on sequential Bayesian updating
    Zhao, Fei
    Guo, Ming
    Liu, Xuejuan
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2024, 30 (02): : 635 - 642
  • [25] Remaining Useful Life Prediction of Lithium-ion Battery Based on Discrete Wavelet Transform
    Wang, Yujie
    Pan, Rui
    Yang, Duo
    Tang, Xiaopeng
    Chen, Zonghai
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2053 - 2058
  • [26] A rest-time-based prognostic model for remaining useful life prediction of lithium-ion battery
    Liming Deng
    Wenjing Shen
    Hongfei Wang
    Shuqiang Wang
    Neural Computing and Applications, 2021, 33 : 2035 - 2046
  • [27] Remaining Useful Life Prediction of Power Lithium-Ion Battery based on Artificial Neural Network Model
    Hou, Enguang
    Qiao, Xin
    Liu, Guangmin
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON MECHANICAL, ELECTRONIC, CONTROL AND AUTOMATION ENGINEERING (MECAE 2017), 2017, 61 : 371 - 374
  • [28] An enhanced deep learning framework for state of health and remaining useful life prediction of lithium-ion battery based on discharge fragments
    Wang, Shilong
    Wang, Peiben
    Wang, Lingfeng
    Li, Ke
    Xie, Haiming
    Jiang, Fachao
    JOURNAL OF ENERGY STORAGE, 2025, 107
  • [29] A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery
    Tang, Ting
    Yuan, Huimei
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 217
  • [30] Life prediction of lithium-ion battery based on a hybrid model
    Chen, Xu-Dong
    Yang, Hai-Yue
    Wun, Jhang-Shang
    Wang, Ching-Hsin
    Li, Ling-Ling
    ENERGY EXPLORATION & EXPLOITATION, 2020, 38 (05) : 1854 - 1878