Lithium-ion battery health state and remaining useful life prediction based on hybrid model MFE-GRU-TCA

被引:9
|
作者
Wang, Xiaohua [1 ]
Dai, Ke [1 ]
Hu, Min [1 ]
Ni, Nanbing [1 ]
机构
[1] Hefei Univ Technol, Sch Comp Sci & Informat Engn, Anhui Prov Key Lab Affect Comp & Adv Intelligent M, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Multi-feature extraction; Temporal attention; State of health; Gated recurrent units; PROGNOSTICS;
D O I
10.1016/j.est.2024.112442
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate prediction of battery state of health (SOH) and remaining useful life (RUL) is crucial for reducing the risk of energy storage battery failures and intelligent management of energy storage power stations. Currently, most existing research methods only consider capacity as the input for their models, disregarding the interconnectedness of internal battery feature data. A model based on MFE-GRU-TCA (Multi-Feature Extraction and Temporal Convolutional Attention Gated Recurrent Units) is proposed to improve the accuracy of lithium-ion battery SOH and RUL prediction. The MFE module is used to extract data features from multiple charge/discharge cycles of lithium-ion batteries that have undergone data selection and data scaling, and then concatenating them with overall features from the cycles. The GRU module is then used to capture the longterm dependencies in the sequential data. The TCA module is used to better represent the decay trend of the capacity series and mitigate the influence of capacity regeneration phenomenon. Moreover, the TCA module leverages temporal convolutional attention to focus on relevant temporal states and produce more accurate predictions. Extensive experiments were conducted on the NASA and CALCE datasets, and comparisons were made with existing methods. The experimental results demonstrate that the proposed model achieves more accurate predictions of lithium-ion battery SOH and RUL. The Root Mean Square Errors (RMSE) on the NASA dataset and CALCE dataset are below 0.832% and 0.614% respectively.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] State-of-health estimation and remaining useful life for lithium-ion battery based on deep learning with Bayesian hyperparameter optimization
    Kong, Depeng
    Wang, Shuhui
    Ping, Ping
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (05) : 6081 - 6098
  • [22] Remaining Useful Life Prediction for Lithium-Ion Batteries With a Hybrid Model Based on TCN-GRU-DNN and Dual Attention Mechanism
    Li, Lei
    Li, Yuanjiang
    Mao, Runze
    Li, Li
    Hua, Wenbo
    Zhang, Jinglin
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2023, 9 (03) : 4726 - 4740
  • [23] Prediction of Remaining Useful Life of the Lithium-Ion Battery Based on Improved Particle Filtering
    Wu, Tiezhou
    Zhao, Tong
    Xu, Siyun
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [24] Prediction for the Remaining Useful Life of Lithium-ion Battery Based on PCA-NARX
    Pang X.-Q.
    Wang Z.-Q.
    Zeng J.-C.
    Jia J.-F.
    Shi Y.-H.
    Wen J.
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2019, 39 (04): : 406 - 412
  • [25] A rest-time-based prognostic model for remaining useful life prediction of lithium-ion battery
    Liming Deng
    Wenjing Shen
    Hongfei Wang
    Shuqiang Wang
    Neural Computing and Applications, 2021, 33 : 2035 - 2046
  • [26] A rest-time-based prognostic model for remaining useful life prediction of lithium-ion battery
    Deng, Liming
    Shen, Wenjing
    Wang, Hongfei
    Wang, Shuqiang
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (06) : 2035 - 2046
  • [27] A Hybrid Method for Remaining Useful Life Estimation of Lithium-Ion Battery with Regeneration Phenomena
    Zhao, Lin
    Wang, Yipeng
    Cheng, Jianhua
    APPLIED SCIENCES-BASEL, 2019, 9 (09):
  • [28] A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery
    Tang, Ting
    Yuan, Huimei
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 217
  • [29] Hybrid Approach of Iterative Updating for Lithium-Ion Battery Remaining Useful Life Estimation
    Song, Yuchen
    Yang, Chen
    Wang, Tao
    Liu, Datong
    Peng, Yu
    2016 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHENGDU), 2016,
  • [30] State of Health Monitoring and Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Temporal Convolutional Network
    Zhou, Danhua
    Li, Zhanying
    Zhu, Jiali
    Zhang, Haichuan
    Hou, Lin
    IEEE ACCESS, 2020, 8 : 53307 - 53320