Increasing cotton lint yield and water use efficiency for subsurface drip irrigation without mulching

被引:1
|
作者
Li, Nan-nan [1 ]
Li, Jun-hong [2 ]
Shi, Xiao-juan [1 ]
Shi, Feng [1 ]
Tian, Yu [1 ]
Wang, Jun [1 ,3 ]
Hao, Xian-zhe [3 ]
Luo, Hong-hai [1 ]
Wang, Zhan-biao [2 ]
机构
[1] Shihezi Univ, Key Lab Oasis Eco Agr, Xinjiang Prod & Construct Grp, Shihezi, Xinjiang, Peoples R China
[2] Chinese Acad Agr Sci, Inst Western Agr, Changji, Peoples R China
[3] Xinjiang Acad Agr & Reclamat Sci, Soil & Water Res Inst, Shihezi, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
subsurface drip irrigation; without mulching model; soil hydrothermal environment; water use efficiency; photosynthesis; RESIDUAL PLASTIC FILM; BIODEGRADABLE FILMS; SOIL-TEMPERATURE; IMPROVES; PHOTOSYNTHESIS; NITROGEN; BIOMASS; TRAITS; GROWTH; FURROW;
D O I
10.3389/fpls.2024.1433719
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Introduction Planting without mulching can eliminate the residual film pollution caused by the long-term use of plastic film covers, but it will increase soil moisture evaporation and heat loss and severely reduce water use efficiency and cotton productivity in cotton (Gossypium hirsutum L.) fields in arid regions. It is unclear whether the advantages of subsurface drip irrigation and nighttime irrigation can be leveraged to reduce the amount of irrigation applied in fields, improve the soil and leaf hydrothermal environments, and increase the synchronicity of yield and water use efficiency (WUE).Methods Therefore, in a two-year field experiment (2019-2020), cotton was grown under different irrigation treatments (I5, 3753 m3 ha-1; I4, 3477 m3 ha-1; I3, 3201 m3 ha-1; I2, 2925 m3 ha-1; and I1, 2649 m3 ha-1). The soil volumetric moisture content, soil temperature, leaf relative water content (RWC), daily changes in gas exchange parameters, lint yield, and WUE were evaluated.Results and discussion The results showed that reducing irrigation can reduce the soil volumetric moisture content (0-40 cm soil layer), increase the soil temperature and soil temperature conductivity, and increase the leaf temperature, intercellular carbon dioxide concentration (Ci), and WUE; however, reducing irrigation is not conducive to increasing the leaf RWC, net photosynthetic rate (Pn), stomatal conductance (Gs), or transpiration rate (Tr). There was no significant difference in WUE between the I3 and I4 treatments from 8:00 to 20:00, but the lint yield in these treatments increased by 2.8-12.2% compared to that in the I5 treatment, with no significant difference between the I3 and I4 treatments. In addition, a related analysis revealed that the positive effects of the leaf hydrothermal environment on the Pn and soil temperature on the WUE occurs during the same period (10:00-16:00). Overall, an irrigation amount of 3201-3477 m3 ha-1 applied with a subsurface nighttime irrigation system without mulching can enhance the soil moisture content and soil temperature, maintain a high photosynthetic capacity, and increase the lint yield and WUE. These results revealed that the negative impacts of plastic film contamination in arid areas can be alleviated.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Mulched drip irrigation increases cotton yield and water use efficiency via improving fine root plasticity
    Wang, Jiangtao
    Du, Gangfeng
    Tian, Jingshan
    Jiang, Chuangdao
    Zhang, Yali
    Zhang, Wangfeng
    AGRICULTURAL WATER MANAGEMENT, 2021, 255
  • [32] Effects of surface and subsurface drip irrigation regimes with saline water on yield and water use efficiency of potato in arid conditions of Tunisia
    El Mokh, Fathia
    Nagaz, Kamel
    Masmoudi, Mohamed Moncef
    Ben Mechlia, Netij
    JOURNAL OF AGRICULTURE AND ENVIRONMENT FOR INTERNATIONAL DEVELOPMENT, 2014, 108 (02) : 227 - 246
  • [33] Deficit Subsurface Drip Irrigation Improves Water Use Efficiency and Stabilizes Yield by Enhancing Subsoil Water Extraction in Winter Wheat
    Yang, Ming-Da
    Leghari, Shah Jahan
    Guan, Xiao-Kang
    Ma, Shou-Chen
    Ding, Chao-Ming
    Mei, Fu-Jian
    Wei, Li
    Wang, Tong-Chao
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [34] EFFECT OF DRIP IRRIGATION AND MULCHING ON TOMATO YIELD
    SHRIVASTAVA, PK
    PARIKH, MM
    SAWANI, NG
    RAMAN, S
    AGRICULTURAL WATER MANAGEMENT, 1994, 25 (02) : 179 - 184
  • [35] Effects of different surface and subsurface drip irrigation levels on growth traits, tuber yield, and irrigation water use efficiency of potato crop
    Mohamed A. Mattar
    Tarek K. Zin El-Abedin
    Hussein M. Al-Ghobari
    A. A. Alazba
    Hosam O. Elansary
    Irrigation Science, 2021, 39 : 517 - 533
  • [36] Effects of different surface and subsurface drip irrigation levels on growth traits, tuber yield, and irrigation water use efficiency of potato crop
    Mattar, Mohamed A.
    Zin El-Abedin, Tarek K.
    Al-Ghobari, Hussein M.
    Alazba, A. A.
    Elansary, Hosam O.
    IRRIGATION SCIENCE, 2021, 39 (04) : 517 - 533
  • [37] APPROPRIATE SUBSURFACE DRIP IRRIGATION DEPTH CAN IMPROVE THE PHOTOSYNTHETIC CAPACITY AND INCREASE THE ECONOMIC COEFFICIENT OF COTTON WITHOUT PLASTIC MULCHING
    Duan, J.
    Wang, G.
    Wang, J.
    Hao, X.
    Luo, H.
    Yang, G.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2022, 20 (05): : 3763 - 3777
  • [38] Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation
    Ibragimov, Nazirbay
    Evett, Steven R.
    Esanbekov, Yusupbek
    Kamilov, Bakhtiyor S.
    Mirzaev, Lutfullo
    Lamers, John P. A.
    AGRICULTURAL WATER MANAGEMENT, 2007, 90 (1-2) : 112 - 120
  • [39] Precision subsurface drip irrigation increases yield while sustaining water use efficiency in Mediterranean poplar bioenergy plantations
    Paris, Pierluigi
    Di Matteo, Giovanni
    Tarchi, Massimo
    Tosi, Luca
    Spaccino, Luciano
    Lauteri, Marco
    FOREST ECOLOGY AND MANAGEMENT, 2018, 409 : 749 - 756
  • [40] Effects of surface-subsurface relay drip irrigation on soil water and salt transport and cotton yield
    Qi, Chen
    Cao, Hongxia
    He, Zijian
    Ding, Bangxin
    Li, Zhijun
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2025, 41 (02): : 120 - 133