Increasing cotton lint yield and water use efficiency for subsurface drip irrigation without mulching

被引:1
|
作者
Li, Nan-nan [1 ]
Li, Jun-hong [2 ]
Shi, Xiao-juan [1 ]
Shi, Feng [1 ]
Tian, Yu [1 ]
Wang, Jun [1 ,3 ]
Hao, Xian-zhe [3 ]
Luo, Hong-hai [1 ]
Wang, Zhan-biao [2 ]
机构
[1] Shihezi Univ, Key Lab Oasis Eco Agr, Xinjiang Prod & Construct Grp, Shihezi, Xinjiang, Peoples R China
[2] Chinese Acad Agr Sci, Inst Western Agr, Changji, Peoples R China
[3] Xinjiang Acad Agr & Reclamat Sci, Soil & Water Res Inst, Shihezi, Peoples R China
来源
FRONTIERS IN PLANT SCIENCE | 2024年 / 15卷
基金
中国国家自然科学基金;
关键词
subsurface drip irrigation; without mulching model; soil hydrothermal environment; water use efficiency; photosynthesis; RESIDUAL PLASTIC FILM; BIODEGRADABLE FILMS; SOIL-TEMPERATURE; IMPROVES; PHOTOSYNTHESIS; NITROGEN; BIOMASS; TRAITS; GROWTH; FURROW;
D O I
10.3389/fpls.2024.1433719
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Introduction Planting without mulching can eliminate the residual film pollution caused by the long-term use of plastic film covers, but it will increase soil moisture evaporation and heat loss and severely reduce water use efficiency and cotton productivity in cotton (Gossypium hirsutum L.) fields in arid regions. It is unclear whether the advantages of subsurface drip irrigation and nighttime irrigation can be leveraged to reduce the amount of irrigation applied in fields, improve the soil and leaf hydrothermal environments, and increase the synchronicity of yield and water use efficiency (WUE).Methods Therefore, in a two-year field experiment (2019-2020), cotton was grown under different irrigation treatments (I5, 3753 m3 ha-1; I4, 3477 m3 ha-1; I3, 3201 m3 ha-1; I2, 2925 m3 ha-1; and I1, 2649 m3 ha-1). The soil volumetric moisture content, soil temperature, leaf relative water content (RWC), daily changes in gas exchange parameters, lint yield, and WUE were evaluated.Results and discussion The results showed that reducing irrigation can reduce the soil volumetric moisture content (0-40 cm soil layer), increase the soil temperature and soil temperature conductivity, and increase the leaf temperature, intercellular carbon dioxide concentration (Ci), and WUE; however, reducing irrigation is not conducive to increasing the leaf RWC, net photosynthetic rate (Pn), stomatal conductance (Gs), or transpiration rate (Tr). There was no significant difference in WUE between the I3 and I4 treatments from 8:00 to 20:00, but the lint yield in these treatments increased by 2.8-12.2% compared to that in the I5 treatment, with no significant difference between the I3 and I4 treatments. In addition, a related analysis revealed that the positive effects of the leaf hydrothermal environment on the Pn and soil temperature on the WUE occurs during the same period (10:00-16:00). Overall, an irrigation amount of 3201-3477 m3 ha-1 applied with a subsurface nighttime irrigation system without mulching can enhance the soil moisture content and soil temperature, maintain a high photosynthetic capacity, and increase the lint yield and WUE. These results revealed that the negative impacts of plastic film contamination in arid areas can be alleviated.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] INTEGRATION OF SUBSURFACE IRRIGATION AND ORGANIC MULCHING WITH DEFICIT IRRIGATION TO INCREASE WATER USE EFFICIENCY OF DRIP IRRIGATION
    Elnemr, Moataz
    INMATEH-AGRICULTURAL ENGINEERING, 2021, 64 (02): : 215 - 226
  • [2] Water use and lint yield response of drip irrigated cotton to the length of irrigation season
    Karam, Fadi
    Lahoud, Rafic
    Masaad, Randa
    Daccache, Andre
    Mounzer, Oussama
    Rouphael, Youssef
    AGRICULTURAL WATER MANAGEMENT, 2006, 85 (03) : 287 - 295
  • [3] Effects of film mulching on evapotranspiration, yield and water use efficiency of a maize field with drip irrigation in Northeastern China
    Zhang, Yanqun
    Wang, Jiandong
    Gong, Shihong
    Xe, Di
    Sui, Juan
    Wu, Zhongdong
    Mo, Yan
    AGRICULTURAL WATER MANAGEMENT, 2018, 205 : 90 - 99
  • [4] Evaluation of corn grain yield and water use efficiency using subsurface drip irrigation
    Pablo, R. G.
    O'Neill, M. K.
    McCaslin, B. D.
    Remmenga, M. D.
    Keenan, J. G.
    Onken, B. M.
    JOURNAL OF SUSTAINABLE AGRICULTURE, 2007, 30 (01): : 153 - 172
  • [5] Influence of Different Irrigation Water Treatments on Cotton Growth and Yield Transplantation without Film under Subsurface Drip Irrigation
    Lei Cheng-xia
    He Xin-lin
    Wang Zhen-hua
    Wei Chuang
    2010 CONFERENCE ON MODERN HYDRAULIC ENGINEERING, 2010, : 103 - 106
  • [6] Irrigation Water Use Efficiency and Yield of Pistachio under Aerated Subsurface Drip Irrigation System
    Seifi, A.
    Mirlatifi, S. M.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2020, 22 (06): : 1655 - 1671
  • [7] APPROPRIATE SUBSURFACE DRIP IRRIGATION DEPTH CAN IMPROVE THE PHOTOSYNTHETIC CAPACITY AND INCREASE THE ECONOMIC COEFFICIENT OF COTTON WITHOUT PLASTIC MULCHING
    Duan, J.
    Wang, G.
    Wang, J.
    Hao, X.
    Luo, H.
    Yang, G.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2022, 20 (05): : 3763 - 3777
  • [8] Effects of lateral spacing for drip irrigation and mulching on the distributions of soil water and nitrate, maize yield, and water use efficiency
    Zhou, Lifeng
    He, Jianqiang
    Qi, Zhijuan
    Dyck, Miles
    Zou, Yufeng
    Zhang, Tibin
    Feng, Hao
    AGRICULTURAL WATER MANAGEMENT, 2018, 199 : 190 - 200
  • [9] Effect of film mulching on crop yield and water use efficiency in drip irrigation systems: A meta-analysis
    Zhang, Wenqian
    Dong, Aihong
    Liu, Fulai
    Niu, Wenquan
    Siddique, Kadambot H. M.
    SOIL & TILLAGE RESEARCH, 2022, 221
  • [10] Plastic film mulching with drip irrigation promotes maize (Zea mays L.) yield and water-use efficiency by improving photosynthetic characteristics
    Wang, Chuanjuan
    Zhang, Yanqun
    Wang, Jiandong
    Xu, Di
    Gong, Shihong
    Wu, Zhongdong
    Mo, Yan
    Zhang, Yuanyuan
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2021, 67 (02) : 191 - 204