Prediction of Trustworthiness from Human Demographic & Behavioral Information of An Audio-Visual Corpus

被引:0
|
作者
Foo, Wai Hun [1 ]
Lutfi, Syaheerah Lebai [1 ]
Tick, Andrea [2 ]
机构
[1] Univ Sains Malaysia, Sch Comp Sci, George Town, Malaysia
[2] Obuda Univ, Keleti Karoly Fac Business & Management, Budapest, Hungary
关键词
audio-visual data; behavior; demographic; Spearman rank correlation; relationship; trustworthiness; FACIAL EXPRESSIONS; JUDGMENTS; FACES; MODEL;
D O I
10.1109/INES63318.2024.10629093
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The establishment of relationships relies fundamentally on trust. Investigating the attributes contributing to trustworthiness holds significant merit for enhancing decision-making processes across social, political, business, education, and healthcare domains. A critical challenge lies in discerning how individuals make trust-related decisions and the specific cues influencing such judgments. This research endeavors to examine the interplay between human demographic and behavioral information and their correlation with trustworthiness. A diverse set of participants engaged in a survey, evaluating short acted emotional videos based on attributes including authenticity, comfort, eloquence, expressiveness, kindness, physical attractiveness, trustworthiness (TW), and voice attractiveness. Through Spearman rank correlation analysis, authenticity (rho= 0.68) and kindness (rho= 0.66) emerge as the primary attributes strongly associated with TW. Conversely, the demographic background of annotators demonstrates a weak relationship with TW.
引用
收藏
页码:187 / 194
页数:8
相关论文
共 50 条
  • [1] Multi-Speaker Audio-Visual Corpus RUSAVIC: Russian Audio-Visual Speech in Cars
    Ivanko, Denis
    Ryumin, Dmitry
    Axyonov, Alexandr
    Kashevnik, Alexey
    Karpov, Alexey
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 1555 - 1559
  • [2] Developing an Audio-visual Corpus of Scottish Gaelic
    Clayton, Ian
    Patton, Colleen
    Carnie, Andrew
    Hammond, Michael
    Fisher, Muriel
    LANGUAGE DOCUMENTATION & CONSERVATION, 2018, 12 : 481 - 513
  • [3] The Turkish Audio-Visual Bipolar Disorder Corpus
    Ciftci, Elvan
    Kaya, Heysem
    Gulec, Huseyin
    Salah, Albert Ali
    2018 FIRST ASIAN CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION (ACII ASIA), 2018,
  • [4] AusTalk: an audio-visual corpus of Australian English
    Estival, Dominique
    Cassidy, Steve
    Cox, Felicity
    Burnham, Denis
    LREC 2014 - NINTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2014, : 3105 - 3109
  • [5] Extraction of Information of Audio-Visual Contents
    Aguilar, Carlos
    Sanchez, Lydia
    Campos, Manuel
    TRIPLEC-COMMUNICATION CAPITALISM & CRITIQUE, 2011, 9 (02): : 543 - 550
  • [6] Behavioral inhibition system sensitivity moderates audio-visual neutral information processing
    Yoon, K. Lira
    Hong, Sang Wook
    JOURNAL OF BEHAVIOR THERAPY AND EXPERIMENTAL PSYCHIATRY, 2020, 69
  • [7] Building a data corpus for audio-visual speech recognition
    Chitu, Alin G.
    Rothkrantz, Leon J. M.
    EUROMEDIA '2007, 2007, : 88 - 92
  • [8] An audio-visual corpus for multimodal automatic speech recognition
    Andrzej Czyzewski
    Bozena Kostek
    Piotr Bratoszewski
    Jozef Kotus
    Marcin Szykulski
    Journal of Intelligent Information Systems, 2017, 49 : 167 - 192
  • [9] An audio-visual corpus for multimodal automatic speech recognition
    Czyzewski, Andrzej
    Kostek, Bozena
    Bratoszewski, Piotr
    Kotus, Jozef
    Szykulski, Marcin
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2017, 49 (02) : 167 - 192
  • [10] Efficient audio-visual information fusion using encoding pace synchronization for Audio-Visual Speech Separation
    Xu, Xinmeng
    Tu, Weiping
    Yang, Yuhong
    INFORMATION FUSION, 2025, 115