Inertial range of magnetorotational turbulence

被引:2
|
作者
Kawazura, Yohei [1 ,2 ,3 ]
Kimura, Shigeo S. [1 ,4 ]
机构
[1] Tohoku Univ, Frontier Res Inst Interdisciplinary Sci, 6-3 Aoba, Sendai 9808578, Japan
[2] Tohoku Univ, Grad Sch Sci, Dept Geophys, 6-3 Aoba, Sendai 9808578, Japan
[3] Utsunomiya Univ, Sch Data Sci & Management, 350 Minemachi, Utsunomiya, Tochigi 3218505, Japan
[4] Tohoku Univ, Astron Inst, 6-3 Aoba, Sendai, 9808578, Japan
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 35期
关键词
SHEARING-BOX SIMULATIONS; M87 EVENT HORIZON; MAGNETOHYDRODYNAMIC TURBULENCE; ACCRETION DISCS; MHD SIMULATIONS; INSTABILITY; MRI; ACCELERATION; ANISOTROPY; DIFFUSION;
D O I
10.1126/sciadv.adp4965
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accretion disks around compact stars are formed due to turbulence driven by magnetorotational instability. Despite over 30 years of numerous computational studies on magnetorotational turbulence, the properties of fluctuations in the inertial range-where cross-scale energy transfer dominates over energy injection-have remained elusive, primarily due to insufficient numerical resolution. Here, we report the highest-resolution simulation of magnetorotational turbulence ever conducted. Our simulations reveal a constant cross-scale energy flux, a hallmark of the inertial range. We found that as the cascade proceeds to smaller scales in the inertial range, the kinetic and magnetic energies tend toward equipartitioning with the same spectral slope, and slow magnetosonic fluctuations dominate over Alfv & eacute;nic fluctuations, having twice the energy. These findings align remarkably with the theoretical expectations from the reduced magnetohydrodynamic model, which assumes a near-azimuthal mean magnetic field. Our results provide important implications for interpreting the radio observations by the Event Horizon Telescope.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Interstellar turbulence driven by the magnetorotational instability
    Dziourkevitch, N. (nsdziourkevitch@aip.de), 1600, EDP Sciences (423):
  • [42] Magnetorotational Turbulence and Dynamo in a Collisionless Plasma
    Kunz, Matthew W.
    Stone, James M.
    Quataert, Eliot
    PHYSICAL REVIEW LETTERS, 2016, 117 (23)
  • [43] Accretion Disk Winds by Magnetorotational Turbulence
    Suzuki, Takeru K.
    NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2014, 2015, 498 : 22 - 26
  • [44] Interstellar turbulence driven by the magnetorotational instability
    Dziourkevitch, N
    Elstner, D
    Rüdiger, G
    ASTRONOMY & ASTROPHYSICS, 2004, 423 (02) : L29 - L32
  • [45] Mathematical constraints on the scaling exponents in the inertial range of fluid turbulence
    Djenidi, L.
    Antonia, R. A.
    Tang, S. L.
    PHYSICS OF FLUIDS, 2021, 33 (03)
  • [46] INERTIAL RANGE OF WEAK MAGNETOHYDRODYNAMIC TURBULENCE IN INTERSTELLAR-MEDIUM
    MCIVOR, I
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1977, 178 (01) : 85 - 99
  • [47] Inertial-Range Reconnection in Magnetohydrodynamic Turbulence and in the Solar Wind
    Lalescu, Cristian C.
    Shi, Yi-Kang
    Eyink, Gregory L.
    Drivas, Theodore D.
    Vishniac, Ethan T.
    Lazarian, Alexander
    PHYSICAL REVIEW LETTERS, 2015, 115 (02)
  • [48] Inertial- and dissipation-range asymptotics in fluid turbulence
    Dhar, SK
    Sain, A
    Pandit, R
    PHYSICAL REVIEW LETTERS, 1997, 78 (15) : 2964 - 2967
  • [49] SOME INERTIAL RANGE CORRELATORS IN FULLY-DEVELOPED TURBULENCE
    PRASKOVSKY, A
    ONCLEY, S
    PHYSICAL REVIEW E, 1995, 51 (06) : R5197 - R5199
  • [50] Inertial range spectrum of field-aligned whistler turbulence
    Dwivedi, Navin Kumar
    Singh, Shobhana
    PHYSICA SCRIPTA, 2017, 92 (03)