Inertial range of magnetorotational turbulence

被引:2
|
作者
Kawazura, Yohei [1 ,2 ,3 ]
Kimura, Shigeo S. [1 ,4 ]
机构
[1] Tohoku Univ, Frontier Res Inst Interdisciplinary Sci, 6-3 Aoba, Sendai 9808578, Japan
[2] Tohoku Univ, Grad Sch Sci, Dept Geophys, 6-3 Aoba, Sendai 9808578, Japan
[3] Utsunomiya Univ, Sch Data Sci & Management, 350 Minemachi, Utsunomiya, Tochigi 3218505, Japan
[4] Tohoku Univ, Astron Inst, 6-3 Aoba, Sendai, 9808578, Japan
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 35期
关键词
SHEARING-BOX SIMULATIONS; M87 EVENT HORIZON; MAGNETOHYDRODYNAMIC TURBULENCE; ACCRETION DISCS; MHD SIMULATIONS; INSTABILITY; MRI; ACCELERATION; ANISOTROPY; DIFFUSION;
D O I
10.1126/sciadv.adp4965
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accretion disks around compact stars are formed due to turbulence driven by magnetorotational instability. Despite over 30 years of numerous computational studies on magnetorotational turbulence, the properties of fluctuations in the inertial range-where cross-scale energy transfer dominates over energy injection-have remained elusive, primarily due to insufficient numerical resolution. Here, we report the highest-resolution simulation of magnetorotational turbulence ever conducted. Our simulations reveal a constant cross-scale energy flux, a hallmark of the inertial range. We found that as the cascade proceeds to smaller scales in the inertial range, the kinetic and magnetic energies tend toward equipartitioning with the same spectral slope, and slow magnetosonic fluctuations dominate over Alfv & eacute;nic fluctuations, having twice the energy. These findings align remarkably with the theoretical expectations from the reduced magnetohydrodynamic model, which assumes a near-azimuthal mean magnetic field. Our results provide important implications for interpreting the radio observations by the Event Horizon Telescope.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Theory of inertial range scaling in fully developed turbulence
    Dekker, H
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 361 (01) : 1 - 10
  • [32] STEADY-STATE TURBULENCE WITH A NARROW INERTIAL RANGE
    WEATHERALL, JC
    NICHOLSON, DR
    GOLDMAN, MV
    PHYSICS OF FLUIDS, 1983, 26 (04) : 1103 - 1113
  • [33] Scaling laws in Hall inertial-range turbulence
    Narita, Yasuhito
    Baumjohann, Wolfgang
    Treumann, Rudolf A.
    ANNALES GEOPHYSICAE, 2019, 37 (05) : 825 - 834
  • [34] THE INERTIAL RANGE SPECTRUM FOR A CAVITON MODEL OF LANGMUIR TURBULENCE
    HALPIN, TPJ
    TERHAAR, D
    PHYSICS LETTERS A, 1985, 113 (06) : 311 - 312
  • [35] Entropy, irreversibility and cascades in the inertial range of isotropic turbulence
    Vela-Martin, Alberto
    Jimenez, Javier
    JOURNAL OF FLUID MECHANICS, 2021, 915
  • [36] Bridging inertial and dissipation range statistics in rotating turbulence
    Rathor, Shailendra K.
    Sharma, Manohar Kumar
    Ray, Samriddhi Sankar
    Chakraborty, Sagar
    PHYSICS OF FLUIDS, 2020, 32 (09)
  • [37] Inertial range scalings of dissipation and enstrophy in isotropic turbulence
    Chen, SY
    Sreenivasan, KR
    Nelkin, M
    PHYSICAL REVIEW LETTERS, 1997, 79 (07) : 1253 - 1256
  • [38] Inertial Range Scaling in Rotations of Long Rods in Turbulence
    Parsa, Shima
    Voth, Greg A.
    PHYSICAL REVIEW LETTERS, 2014, 112 (02)
  • [39] Chaos in turbulence driven by the magnetorotational instability
    Winters, WF
    Balbus, SA
    Hawley, JF
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 340 (02) : 519 - 524
  • [40] Dwarf nova outbursts with magnetorotational turbulence
    Coleman, M. S. B.
    Kotko, I.
    Blaes, O.
    Lasota, J. -P.
    Hirose, S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 462 (04) : 3710 - 3726