Molecular structure, light harvesting effect, electronic, topological behavior and molecular docking and molecular dynamic simulation of (Z)-1-(4-chlorophenyl)-3-(3-(E)-3-(4-chlorophenyl)-3-oxo prop-1-en-1-yl)-phenyl) prop-2-en-1-one-in-vitro assay

被引:1
|
作者
Aarthi, K., V [1 ]
Rajagopal, Hemamalini [1 ]
Reeda, V. S. Jeba [2 ,9 ]
Rizwana, Fathima B. [3 ]
Mishma, J. N. Cheerlin [2 ]
Narayana, B. [4 ,5 ]
Kadaikunnan, Shine [6 ]
Khaled, Jamal M. [6 ]
Manikandan, A. [7 ]
Muthu, S. [8 ]
机构
[1] Queen Marys Coll, Dept Phys, Chennai, Tamil Nadu, India
[2] Womens Christian Coll, Dept Phys, Nagercoil, Tamil Nadu, India
[3] Madras Christian Coll, Dept Phys, Chennai, Tamil Nadu, India
[4] Mangalore Univ, Dept Chem, Mangalagangothri, Karnataka, India
[5] KK Univ, Sch Appl Sci, Biharsharif, Bihar, India
[6] King Saud Univ, Coll Sci, Dept Bot & Microbiol, Riyadh, Saudi Arabia
[7] Karpagam Acad Higher Educ, Ctr Mat Chem, Dept Chem, Coimbatore, Tamil Nadu, India
[8] Arignar Anna Govt Arts Coll, Dept Phys, Cheyyar 604407, Tamil Nadu, India
[9] Easwari Engn Coll, Dept Phys, Chennai 600089, Tamil Nadu, India
关键词
Density functional theory; minimum inhibitory concentration; molecular docking; non-covalent interactions; SPECTROSCOPIC FT-IR; CRYSTAL-STRUCTURE; ORBITAL THEORY; HOMO-LUMO; DERIVATIVES; INSIGHTS; RAMAN; DFT; SOLUBILITY; DISCOVERY;
D O I
10.1080/00387010.2024.2388296
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
(Z)-1-(4-chlorophenyl)-3-(3-((E)-3-(4-chlorophenyl)-3-oxoprop-1-en-1-yl)phenyl)prop-2-en-1-one (CCOP) has been explored through both experimental and theoretical investigation. The density functional theory was used to perform the theoretical computations. The compound's geometrical structure was optimized, and comparisons were made between experimental results and calculated vibrational wavenumbers. Raman scattering active regions and infrared intensities have been determined. The Light Harvesting Efficiency of CCOP was determined to be 0.88, derived from an f value of 0.9735, indicating that 88% of incident light can be converted into influence. The f values for various solvents were found to be 0.9119 (ethanol), 0.9024 (DMSO), 0.8919 (water), and 0.8802 (gas). Wave function analysis identifies electron depletion areas using the electron localization function. Through the study of molecular electrostatic potential and Fukui functions, the nucleophilic sites are discovered. Research on donor-acceptor interactions examines the compound's hyperconjugate interactions and intra- and intermolecular charge transfer. The antibacterial and antifungal activity assay revealed that CCOP has moderate antibacterial and antifungal properties. The minimum inhibitory concentration (MIC) values for Staphylococcus sp. and Pseudomonas sp. were found to be 750 mu g/mL, while Escherichia coli and Salmonella sp. showed MIC values of 500 mu g/mL. The substance's drug-like qualities were demonstrated using Lipinski's criteria of five, and the molecule is advised for usage in pharmaceuticals utilizing ADMET form. Docking of COOP with bacterial and fungal proteins have been done, and lowest binding energy -7.96 and -6.96 kcal/mol has been attained for 3X0V and 3CHY protein. Exploiting molecular dynamics simulations, stability of COOP compound has been investigated.
引用
收藏
页码:621 / 636
页数:16
相关论文
共 50 条
  • [1] (E)-3-(4-Chlorophenyl)-3-[3-(4-chlorophenyl)-1H-pyrazol-1-yl]prop-2-enal
    Susindran, V.
    Athimoolam, S.
    Bahadur, S. Asath
    Manikannan, R.
    Muthusubramanian, S.
    ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE, 2010, 66 : O2594 - U772
  • [2] Spectral Characteristics and Molecular Structure of (E)-1-(4-Chlorophenyl)-3-(4-(Dimethylamino)Phenyl)Prop-2-en-1-One (DAP)
    Aldaghri, O.
    MATERIALS, 2021, 14 (11)
  • [3] (2E)-3-(4-Chlorophenyl)-1-(2,4-dimethylquinolin-3-yl)prop-2-en-1-one
    Prasath, R.
    Bhavana, P.
    Ng, Seik Weng
    Tiekink, Edward R. T.
    ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE, 2011, 67 : O796 - U1617
  • [4] Molecular structure, vibrational spectroscopy (FT-IR, Raman), solvent effects, molecular docking and DFT studies of 1-(4-chlorophenyl)-3-(4-ethoxyphenyl)-prop-2-en-1-one
    Chen, Rui
    Li, Qiuyue
    Xu, Kai
    Zhang, Zhiwei
    Wang, Tianhua
    Ma, Jinkang
    Xi, Yan
    Cao, Lifeng
    Teng, Bing
    Wu, Haitao
    JOURNAL OF MOLECULAR STRUCTURE, 2022, 1267
  • [5] X-ray structure analysis of 1-(4-bromophenyl)-3-(4-chlorophenyl)-prop-2-en-1-one
    Wen Yang
    Lei Wang
    Dechun Zhang
    Journal of Chemical Crystallography, 2006, 36 : 195 - 198
  • [6] Temperature dependence of the Raman spectrum of 1-(4-chlorophenyl)-3-(2-thienyl)prop-2-en-1-one
    de Toledo, T. A.
    da Costa, R. C.
    Al-Maqtari, H. M.
    Jamalis, J.
    Pizani, P. S.
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2017, 180 : 9 - 17
  • [7] X-ray structure analysis of 1-(4-bromophenyl)-3-(4-chlorophenyl)-prop-2-en-1-one
    Yang, Wen
    Wang, Lei
    Zhang, Dechun
    JOURNAL OF CHEMICAL CRYSTALLOGRAPHY, 2006, 36 (03) : 195 - 198
  • [8] Spectroscopic investigations and molecular docking study of (2E)-1-(4-Chlorophenyl)-3-[4-(propan-2-yl)phenyl]prop-2-en-1-one using quantum chemical calculations
    Parveen, Shana
    Al-Alshaikh, Monirah A.
    Panicker, C. Yohannan
    El-Emam, Ali A.
    Salian, Vinutha V.
    Narayana, B.
    Sarojini, B. K.
    van Alsenoy, C.
    JOURNAL OF MOLECULAR STRUCTURE, 2016, 1120 : 317 - 326
  • [9] Crystal structure of (E)-1-(3-chlorophenyl)-3-(furan-2-yl)prop-2-en-1-one
    Zingales, Sarah K.
    Wallace, Maya Z.
    Padgett, Clifford W.
    ACTA CRYSTALLOGRAPHICA SECTION E-CRYSTALLOGRAPHIC COMMUNICATIONS, 2015, 71 : O707 - U176
  • [10] Molecular and Crystal Structure of 1-(4-Chlorophenyl)-3-(4-Nitrophenyl)-1-Triazene
    ZHANG De\|Chun a\ FEI Zheng\|Hao b\ ZHANG Yan\|Qiu a\ YU Kai\|Bei c a(Department of Chemistry
    结构化学, 2000, (01) : 19 - 22