Radar based Continuous Indoor Activity Recognition using Deep Learning

被引:0
|
作者
Breaker, Henry [1 ]
Hamza, Syed Ali [1 ]
机构
[1] Widener Univ, Sch Engn, Chester, PA 19013 USA
关键词
D O I
10.1117/12.3013550
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Radar-based sensing emerges as a promising alternative to cameras and wearable devices for indoor human activity recognition. Unlike wearables, radar sensors offer non-contact and unobtrusive monitoring, while being insensitive to lighting conditions and preserving privacy as compared to cameras. This paper addresses the task of continuous and sequential classification of daily life activities, unlike the problem to isolate distinct motions in isolation. Upon acquiring raw radar data containing sequences of motions, an event detection algorithm, the Short-Time-Average/Long-Time-Average (STA/LTA) algorithm, is utilized to detect individual motion segments. By recognizing breaks between transitions from one motion type to another, the STA/LTA detector isolates individual activity segments. To ensure consistent input shapes for activities of varying durations, image resizing and cropping techniques are employed. Furthermore, data augmentation techniques are applied to modify micro-Doppler signatures, enhancing the classification system's robustness and providing additional data for training.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Deep Learning Framework for Scene Based Indoor Location Recognition
    Hanni, Akkamahadevi
    Chickerur, Satyadhyan
    Bidari, Indira
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ADVANCEMENTS IN POWER AND ENERGY (TAP ENERGY): EXPLORING ENERGY SOLUTIONS FOR AN INTELLIGENT POWER GRID, 2017,
  • [32] Human Activity Recognition Based on FMCW Radar Using CNN and Transfer Learning
    Triani, Listi Restu
    Ahmadi, Nur
    Adiono, Trio
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 248 - 253
  • [33] Kannada Continuous Speech Recognition Using Deep Learning
    Paul, Shubhojeet
    Bhattacharjee, Vandana
    Saha, Sujan Kumar
    ADVANCED NETWORK TECHNOLOGIES AND INTELLIGENT COMPUTING, ANTIC 2023, PT IV, 2024, 2093 : 258 - 269
  • [34] Multi-frequency and multi-domain human activity recognition based on SFCW radar using deep learning
    Jia, Yong
    Guo, Yong
    Wang, Gang
    Song, Ruiyuan
    Cui, Guolong
    Zhong, Xiaoling
    NEUROCOMPUTING, 2021, 444 : 274 - 287
  • [35] A Deep Learning-Based Satellite Target Recognition Method Using Radar Data
    Lu, Wang
    Zhang, Yasheng
    Xu, Can
    Lin, Caiyong
    Huo, Yurong
    SENSORS, 2019, 19 (09)
  • [36] A Survey on Radar-Based Continuous Human Activity Recognition
    Ullmann, Ingrid
    Guendel, Ronny G.
    Kruse, Nicolas Christian
    Fioranelli, Francesco
    Yarovoy, Alexander
    IEEE JOURNAL OF MICROWAVES, 2023, 3 (03): : 938 - 950
  • [37] On Edge Human Action Recognition Using Radar-Based Sensing and Deep Learning
    Gianoglio, Christian
    Mohanna, Ammar
    Rizik, Ali
    Moroney, Laurence
    Valle, Maurizio
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (03) : 4160 - 4172
  • [38] Deep Learning-Based Human Recognition Through the Wall using UWB radar
    Assawaroongsakul, Pongpol
    Khumdee, Mawin
    Phasukkit, Pattarapong
    Houngkamhang, Nongluck
    16TH INTERNATIONAL JOINT SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND NATURAL LANGUAGE PROCESSING (ISAI-NLP 2021), 2021,
  • [39] A CSI-Based Human Activity Recognition Using Deep Learning
    Moshiri, Parisa Fard
    Shahbazian, Reza
    Nabati, Mohammad
    Ghorashi, Seyed Ali
    SENSORS, 2021, 21 (21)
  • [40] Physiotherapy-based human activity recognition using deep learning
    Deotale, Disha
    Verma, Madhushi
    Suresh, P.
    Kumar, Neeraj
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (15): : 11431 - 11444