Some properties of solutions to the integrable Camassa-Holm type equation

被引:0
|
作者
Zhu, Mingxuan [1 ,2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273100, Peoples R China
关键词
Camassa-Holm type equation; Propagation speed; Long time behavior; WELL-POSEDNESS; MODEL;
D O I
10.1016/j.aml.2024.109247
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study an integrable Camassa-Holm type equation. We proved that if the initial datum u(0)equivalent to 0 is compactly supported in[a,c]; then the corresponding solution to the Camassa-Holm type equation has the following property: u(x,t) ={0, x> q(c,t); {l(t)e(x), x< q(a,t). Furthermore, l(t)<0is a continuous non-vanishing function and strictly decreasing. Long time behavior for the support of momentum density is also studied.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Global solutions for the modified Camassa-Holm equation
    Ji, Shuguan
    Zhou, Yonghui
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (10):
  • [32] Global conservative solutions of the Camassa-Holm equation
    Bressan, Alberto
    Constantin, Adrian
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) : 215 - 239
  • [33] A note on the prolongation structure of the cubically nonlinear integrable Camassa-Holm type equation
    Stalin, S.
    Senthilvelan, M.
    PHYSICS LETTERS A, 2011, 375 (43) : 3786 - 3788
  • [34] Some new decay properties of solutions for a modified Camassa-Holm equation with cubic nonlinearity
    Wu, Xinglong
    Zhang, Xin
    Liu, Yanan
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (01)
  • [35] Solutions of the Camassa-Holm Equation Near the Soliton
    Dan-ping Ding
    Wei Lu
    Acta Mathematicae Applicatae Sinica, English Series, 2023, 39 : 450 - 464
  • [36] Periodic conservative solutions of the Camassa-Holm equation
    Holden, Heige
    Raynaud, Xavier
    ANNALES DE L INSTITUT FOURIER, 2008, 58 (03) : 945 - 988
  • [37] Traveling wave solutions of the Camassa-Holm equation
    Lenells, J
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 217 (02) : 393 - 430
  • [38] Uniqueness of dissipative solutions for the Camassa-Holm equation
    Grunert, Katrin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 412 : 474 - 528
  • [39] Compactly Supported Solutions of the Camassa-Holm Equation
    David Henry
    Journal of Nonlinear Mathematical Physics, 2005, 12 : 342 - 347
  • [40] Two-dimensional integrable generalization of the Camassa-Holm equation
    Kraenkel, RA
    Zenchuk, A
    PHYSICS LETTERS A, 1999, 260 (3-4) : 218 - 224