RADIUS PROBLEM ASSOCIATED WITH CERTAIN RATIOS AND LINEAR COMBINATIONS OF ANALYTIC FUNCTIONS

被引:0
|
作者
Krishnan, Priya G. [1 ]
Vaithiyanathan, Ravichandran [1 ]
Saikrishnan, Ponnaiah [1 ]
机构
[1] Natl Inst Technol, Dept Math, Tiruchirappalli 620015, Tamil Nadu, India
关键词
Univalent functions; starlike functions; convex functions; subordination; Janowski starlike functions; Janowski convex functions; radius problem; STARLIKENESS; LEMNISCATE; SUBCLASS;
D O I
10.1515/ms-2024-0066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For normalized starlike functions f : D -> C, we consider the analytic functions g : D -> C defined by g(z) = (1+z(f ''(z))/f'(z))/(zf'(z)/f(z)) and g(z) = (1-alpha)(zf'(z))/f(z) + alpha(1 + (zf ''(z))/f'(z)), 0 <= alpha <= 1. We determine the largest radius rho with 0 < rho <= 1 such that g(rho z) is subordinate to various functions with positive real part.
引用
收藏
页码:877 / 894
页数:18
相关论文
共 50 条
  • [21] Sharp Bohr Radius Constants for Certain Analytic Functions
    Swati Anand
    Naveen Kumar Jain
    Sushil Kumar
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 1771 - 1785
  • [22] On Bohr Radius of Certain Analytic Functions with Negative Coefficients
    Kanwal, Bushra
    Noor, Khalida Inayat
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2021, 53 (05): : 319 - 327
  • [23] Coefficient functionals and radius problems of certain starlike functions
    Naz, Adiba
    Kumar, Sushil
    Ravichandran, V
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (05)
  • [24] A RADIUS PROBLEM FOR A CERTAIN CLASS OF SCHLICHT FUNCTIONS
    Babalola, K. O.
    Jimoh, F. M.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 13 (04): : 477 - 485
  • [25] Ma-Minda starlikeness of certain analytic functions
    Janani, Baskar Babujee
    Ravichandran, V.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2025, 70 (01): : 15 - 32
  • [26] On the radius of convexity of linear combinations of univalent functions and their derivatives
    Greiner, R
    Roth, O
    MATHEMATISCHE NACHRICHTEN, 2003, 254 : 153 - 164
  • [27] CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS ASSOCIATED WITH THE CHEBYSHEV POLYNOMIALS
    Bulut, Serap
    Magesh, Nanjundan
    Balaji, Vittalrao Kupparao
    HONAM MATHEMATICAL JOURNAL, 2018, 40 (04): : 611 - 619
  • [28] Properties of certain analytic multivalent functions defined by a linear operator
    Xu, Neng
    Aouf, M. K.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (06) : 1169 - 1179
  • [29] Argument inequalities for certain analytic functions
    Yang, Ding-Gong
    Liu, Jin-Lin
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (9-10) : 1812 - 1821
  • [30] CERTAIN GENERALIZED SUBCLASSES OF ANALYTIC FUNCTIONS
    Singh, Gurmeet
    Singh, Gagandeep
    Singh, Gurcharanjit
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2019, 18 (3-4): : 215 - 231