Interfacial study and modulation of high-voltage layered cathode based all-solid-state batteries

被引:1
|
作者
Wang, Xiaojin [1 ]
Huang, Haiqi [1 ]
Hu, Jiawei [1 ]
Li, Zhuohua [1 ]
Fan, Huanmin [1 ]
Huang, Yansha [1 ]
Zhang, Yuanyuan [1 ,2 ]
Lu, Dongliang [3 ]
Chang, Yi [1 ,4 ]
Zhao, Ruirui [1 ,5 ]
机构
[1] South China Normal Univ, Guangdong Prov Int Joint Res Ctr Energy Storage Ma, Base Prod Educ & Res Energy Storage & Power Batter, Guangdong Higher Educ Inst,Sch Chem,Engn Res Ctr M, Guangzhou 510006, Guangdong, Peoples R China
[2] South China Normal Univ, Anal & Testing Ctr, Key Lab Theoret Chem Environm, Minist Educ, Guangzhou 510006, Peoples R China
[3] Guangdong Polytech Environm Protect Engn, Foshan 528216, Peoples R China
[4] GAC AION New Energy Automobile Co Ltd, Guangzhou 511434, Peoples R China
[5] Nankai Univ, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid-state batteries; Layered cathode; Interfacial modulation; High energy density; Cathode-electrolyte interface; LITHIUM BATTERIES; LI-ION; CONDUCTIVITY; REACTIVITY; INTERPHASE; STABILITY; SAFETY;
D O I
10.1016/j.jcis.2024.08.035
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Employing layered materials as the cathodes for solid-state batteries (SSBs) is vital in enhancing the batteries' energy density, whereas numerous issues are present regarding the compatibilities between cathode electrode and modified solid electrolyte (ME) in this battery configuration. By investigating the electrochemical performance and interfacial properties of SSBs using various cathodes, the fundamental reason for the poor compatibility between layered cathodes, especially LiCoO2 2 with ME is revealed. Because of the Li(solvent)+ + intercalation environments formed in the ME, the resultant weak-interacted TFSI-- could be adsorbed and destabilized by Co ions on the surface. Besides, the high energy level offsets between LiCoO2 2 and ME lead to Li-ion transferring from the bulk electrode to the electrolyte, resulting in a pre-formed interface on the cathode particles before the electric current is applied, affects the formation of effective cathode-electrolyte interface (CEI) film during electrochemical process and deteriorated overall battery performance. From this view, an interlayer is pre-added on the LiCoO2 2 surface through an electrostatic adsorption method, to adjust the energy level offsets between the cathode and ME, as well as isolate the direct contact of surface Co ions to TFSI-.- . The cycling properties of the SSB using modified LiCoO2 2 are greatly enhanced, and a capacity retention of 68.72 % after 100 cycles could be achieved, against 8.28 % previously, certifying the rationality of the understanding and the effectiveness of the proposed modification method. We believe this research could provide basic knowledge of the compatibility between layered cathodes and MEs, shedding light on designing more effective strategies for achieving SSBs with high energy density.
引用
收藏
页码:953 / 962
页数:10
相关论文
共 50 条
  • [21] Constructing Nano-Interlayer Inhibiting Interfacial Degradation toward High-Voltage PEO-Based All-Solid-State Lithium Batteries
    Zhai, Pengfei
    Qu, Shuangquan
    Ahmad, Niaz
    Hua, Ze
    Shao, Ruiwen
    Yang, Wen
    SMALL, 2024, 20 (35)
  • [22] Monophase-homointerface electrodes intrinsically stabilize high-voltage all-solid-state batteries
    Xiaolin Xiong
    Xianguo Ma
    Tianshi Lv
    Liquan Chen
    Liumin Suo
    Science China(Chemistry), 2024, 67 (05) : 1729 - 1739
  • [23] Monophase-homointerface electrodes intrinsically stabilize high-voltage all-solid-state batteries
    Xiong, Xiaolin
    Ma, Xianguo
    Lv, Tianshi
    Chen, Liquan
    Suo, Liumin
    SCIENCE CHINA-CHEMISTRY, 2024, 67 (05) : 1729 - 1739
  • [24] Deciphering and overcoming the high-voltage limitations of halide and sulfide-based all-solid-state lithium batteries
    Qi, Xiang
    Wu, Gang
    Wu, Meng
    Li, Dabing
    Wang, Chao
    Gao, Lei
    Zhang, Shichao
    Fan, Li-Zhen
    JOURNAL OF ENERGY CHEMISTRY, 2025, 103 : 926 - 935
  • [25] Double-Layer Polymer Electrolyte for High-Voltage All-Solid-State Rechargeable Batteries
    Zhou, Weidong
    Wang, Zhaoxu
    Pu, Yuan
    Li, Yutao
    Xin, Sen
    Li, Xiaofang
    Chen, Jianfeng
    Goodenough, John B.
    ADVANCED MATERIALS, 2019, 31 (04)
  • [26] Deciphering and overcoming the high-voltage limitations of halide and sulfide-based all-solid-state lithium batteries
    Xiang Qi
    Gang Wu
    Meng Wu
    Dabing Li
    Chao Wang
    Lei Gao
    Shichao Zhang
    LiZhen Fan
    Journal of Energy Chemistry, 2025, 103 (04) : 926 - 935
  • [27] Developments of high-voltage all-solid-state thin-film lithium ion batteries
    Schwenzel, J
    Thangadurai, V
    Weppner, W
    JOURNAL OF POWER SOURCES, 2006, 154 (01) : 232 - 238
  • [28] Monophase-homointerface electrodes intrinsically stabilize high-voltage all-solid-state batteries
    Xiaolin Xiong
    Xianguo Ma
    Tianshi Lv
    Liquan Chen
    Liumin Suo
    Science China Chemistry, 2024, 67 : 1729 - 1739
  • [29] Enabling Stable Cycling of 4.2 V High-Voltage All-Solid-State Batteries with PEO-Based Solid Electrolyte
    Qiu, Jiliang
    Liu, Xinyu
    Chen, Rusong
    Li, Qinghao
    Wang, Yi
    Chen, Penghao
    Gan, Luyu
    Lee, Sang-Jun
    Nordlund, Dennis
    Liu, Yijin
    Yu, Xiqian
    Bai, Xuedong
    Li, Hong
    Chen, Liquan
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (22)
  • [30] Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes
    Wang, Shuo
    Fang, Ruyi
    Li, Yutao
    Liu, Yuan
    Xin, Chengzhou
    Richter, Felix H.
    Nan, Ce-Wen
    JOURNAL OF MATERIOMICS, 2021, 7 (02) : 209 - 218