Interfacial study and modulation of high-voltage layered cathode based all-solid-state batteries

被引:1
作者
Wang, Xiaojin [1 ]
Huang, Haiqi [1 ]
Hu, Jiawei [1 ]
Li, Zhuohua [1 ]
Fan, Huanmin [1 ]
Huang, Yansha [1 ]
Zhang, Yuanyuan [1 ,2 ]
Lu, Dongliang [3 ]
Chang, Yi [1 ,4 ]
Zhao, Ruirui [1 ,5 ]
机构
[1] South China Normal Univ, Guangdong Prov Int Joint Res Ctr Energy Storage Ma, Base Prod Educ & Res Energy Storage & Power Batter, Guangdong Higher Educ Inst,Sch Chem,Engn Res Ctr M, Guangzhou 510006, Guangdong, Peoples R China
[2] South China Normal Univ, Anal & Testing Ctr, Key Lab Theoret Chem Environm, Minist Educ, Guangzhou 510006, Peoples R China
[3] Guangdong Polytech Environm Protect Engn, Foshan 528216, Peoples R China
[4] GAC AION New Energy Automobile Co Ltd, Guangzhou 511434, Peoples R China
[5] Nankai Univ, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid-state batteries; Layered cathode; Interfacial modulation; High energy density; Cathode-electrolyte interface; LITHIUM BATTERIES; LI-ION; CONDUCTIVITY; REACTIVITY; INTERPHASE; STABILITY; SAFETY;
D O I
10.1016/j.jcis.2024.08.035
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Employing layered materials as the cathodes for solid-state batteries (SSBs) is vital in enhancing the batteries' energy density, whereas numerous issues are present regarding the compatibilities between cathode electrode and modified solid electrolyte (ME) in this battery configuration. By investigating the electrochemical performance and interfacial properties of SSBs using various cathodes, the fundamental reason for the poor compatibility between layered cathodes, especially LiCoO2 2 with ME is revealed. Because of the Li(solvent)+ + intercalation environments formed in the ME, the resultant weak-interacted TFSI-- could be adsorbed and destabilized by Co ions on the surface. Besides, the high energy level offsets between LiCoO2 2 and ME lead to Li-ion transferring from the bulk electrode to the electrolyte, resulting in a pre-formed interface on the cathode particles before the electric current is applied, affects the formation of effective cathode-electrolyte interface (CEI) film during electrochemical process and deteriorated overall battery performance. From this view, an interlayer is pre-added on the LiCoO2 2 surface through an electrostatic adsorption method, to adjust the energy level offsets between the cathode and ME, as well as isolate the direct contact of surface Co ions to TFSI-.- . The cycling properties of the SSB using modified LiCoO2 2 are greatly enhanced, and a capacity retention of 68.72 % after 100 cycles could be achieved, against 8.28 % previously, certifying the rationality of the understanding and the effectiveness of the proposed modification method. We believe this research could provide basic knowledge of the compatibility between layered cathodes and MEs, shedding light on designing more effective strategies for achieving SSBs with high energy density.
引用
收藏
页码:953 / 962
页数:10
相关论文
共 50 条
  • [21] Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries
    Kim, Jae-Hun
    CORROSION SCIENCE AND TECHNOLOGY-KOREA, 2023, 22 (04): : 287 - 296
  • [22] Optimized functional additive enabled stable cathode and anode interfaces for high-voltage all-solid-state lithium batteries with significantly improved cycling performance
    Li, Liansheng
    Duan, Huanhuan
    Zhang, Leiting
    Deng, Yuanfu
    Chen, Guohua
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (38) : 20331 - 20342
  • [23] Enabling Stable Cycling of 4.2 V High-Voltage All-Solid-State Batteries with PEO-Based Solid Electrolyte
    Qiu, Jiliang
    Liu, Xinyu
    Chen, Rusong
    Li, Qinghao
    Wang, Yi
    Chen, Penghao
    Gan, Luyu
    Lee, Sang-Jun
    Nordlund, Dennis
    Liu, Yijin
    Yu, Xiqian
    Bai, Xuedong
    Li, Hong
    Chen, Liquan
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (22)
  • [24] Review of the electrochemical performance and interfacial issues of high-nickel layered cathodes in inorganic all-solid-state batteries
    Wang, Jing
    Zhao, Shangqian
    Tang, Ling
    Han, Fujuan
    Zhang, Yi
    Xia, Yimian
    Wang, Lijun
    Lu, Shigang
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2022, 29 (05) : 1003 - 1018
  • [25] Interfacial Challenges of Halide-Based All-Solid-State Batteries
    Tan, Yuan
    Beltran, Matthew
    Ke, Jiaqi
    Zhang, Jiayi
    Choi, Junghyun
    Zhou, Yue
    Cho, Kyeongjae
    Lee, Dongsoo
    Su, Laisuo
    ADVANCED ENERGY MATERIALS, 2024,
  • [26] Interfacial challenges in all-solid-state lithium batteries
    Huang, Yonglin
    Shao, Bowen
    Han, Fudong
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 33
  • [27] Rational Optimization of Cathode Composites for Sulfide-Based All-Solid-State Batteries
    Tron, Artur
    Hamid, Raad
    Zhang, Ningxin
    Beutl, Alexander
    NANOMATERIALS, 2023, 13 (02)
  • [28] Composite cathode for all-solid-state lithium batteries: Progress and perspective
    Zeng, Zhen
    Cheng, Jun
    Li, Yuanyuan
    Zhang, Hongqiang
    Li, Deping
    Liu, Hongbin
    Ji, Fengjun
    Sun, Qing
    Ci, Lijie
    MATERIALS TODAY PHYSICS, 2023, 32
  • [29] The nature and suppression strategies of interfacial reactions in all-solid-state batteries
    Ren, Fucheng
    Liang, Ziteng
    Zhao, Wengao
    Zuo, Wenhua
    Lin, Min
    Wu, Yuqi
    Yang, Xuerui
    Gong, Zhengliang
    Yang, Yong
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (06) : 2579 - 2590
  • [30] Challenges and Improvements of All-Solid-State Batteries
    Jang, Jihyun
    JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE, 2023, 67 (03): : 165 - 174