Comprehensive hepatotoxicity prediction: ensemble model integrating machine learning and deep learning

被引:0
|
作者
Khan, Muhammad Zafar Irshad [1 ]
Ren, Jia-Nan [1 ]
Cao, Cheng [1 ,2 ]
Ye, Hong-Yu-Xiang [1 ]
Wang, Hao [1 ]
Guo, Ya-Min [1 ]
Yang, Jin-Rong [1 ,2 ]
Chen, Jian-Zhong [1 ]
机构
[1] Zhejiang Univ, Coll Pharmaceut Sci, Hangzhou, Peoples R China
[2] Zhejiang Univ, Polytech Inst, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
hepatotoxicity; ensemble model; molecular fingerprints; machine learning; deep learning; LIVER-INJURY; DRUG;
D O I
10.3389/fphar.2024.1441587
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background Chemicals may lead to acute liver injuries, posing a serious threat to human health. Achieving the precise safety profile of a compound is challenging due to the complex and expensive testing procedures. In silico approaches will aid in identifying the potential risk of drug candidates in the initial stage of drug development and thus mitigating the developmental cost.Methods In current studies, QSAR models were developed for hepatotoxicity predictions using the ensemble strategy to integrate machine learning (ML) and deep learning (DL) algorithms using various molecular features. A large dataset of 2588 chemicals and drugs was randomly divided into training (80%) and test (20%) sets, followed by the training of individual base models using diverse machine learning or deep learning based on three different kinds of descriptors and fingerprints. Feature selection approaches were employed to proceed with model optimizations based on the model performance. Hybrid ensemble approaches were further utilized to determine the method with the best performance.Results The voting ensemble classifier emerged as the optimal model, achieving an excellent prediction accuracy of 80.26%, AUC of 82.84%, and recall of over 93% followed by bagging and stacking ensemble classifiers method. The model was further verified by an external test set, internal 10-fold cross-validation, and rigorous benchmark training, exhibiting much better reliability than the published models.Conclusion The proposed ensemble model offers a dependable assessment with a good performance for the prediction regarding the risk of chemicals and drugs to induce liver damage.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Cloud failure prediction based on traditional machine learning and deep learning
    Tengku Nazmi Tengku Asmawi
    Azlan Ismail
    Jun Shen
    Journal of Cloud Computing, 11
  • [42] Cloud failure prediction based on traditional machine learning and deep learning
    Asmawi, Tengku Nazmi Tengku
    Ismail, Azlan
    Shen, Jun
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2022, 11 (01):
  • [43] Utilizing machine learning and deep learning for enhanced supercapacitor performance prediction
    Emad-Eldeen, Ahmed
    Azim, Mohamed A.
    Abdelsattar, Montaser
    AbdelMoety, Ahmed
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [44] Prediction of Water Level Using Machine Learning and Deep Learning Techniques
    Ishan Ayus
    Narayanan Natarajan
    Deepak Gupta
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2023, 47 : 2437 - 2447
  • [45] DeepProg: an ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data
    Poirion, Olivier B.
    Jing, Zheng
    Chaudhary, Kumardeep
    Huang, Sijia
    Garmire, Lana X.
    GENOME MEDICINE, 2021, 13 (01)
  • [46] Fuzzy Soft Set Based Stock Prediction Model Integrating Machine Learning with Deep Sentiment Analysis
    Sivri, Mahmut Sami
    Ustundag, Alp
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2022, 39 (2-4) : 201 - 224
  • [47] Comparative Analysis of Machine Learning, Ensemble Learning and Deep Learning Classifiers for Parkinson’s Disease Detection
    Goyal P.
    Rani R.
    SN Computer Science, 5 (1)
  • [48] Application of Machine Learning and Deep Learning in Finite Element Analysis: A Comprehensive Review
    Nath, Dipjyoti
    Ankit
    Neog, Debanga Raj
    Gautam, Sachin Singh
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2024, 31 (05) : 2945 - 2984
  • [49] Deep Ensemble learning and quantum machine learning approach for Alzheimer's disease detection
    Belay, Abebech Jenber
    Walle, Yelkal Mulualem
    Haile, Melaku Bitew
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [50] Ensemble learning model for Protein-Protein interaction prediction with multiple Machine learning techniques
    Lai, Zhenghui
    Li, Mengshan
    Chen, Qianyong
    Gu, Yunlong
    Wang, Nan
    Guan, Lixin
    MEASUREMENT, 2025, 242