Comprehensive hepatotoxicity prediction: ensemble model integrating machine learning and deep learning

被引:0
|
作者
Khan, Muhammad Zafar Irshad [1 ]
Ren, Jia-Nan [1 ]
Cao, Cheng [1 ,2 ]
Ye, Hong-Yu-Xiang [1 ]
Wang, Hao [1 ]
Guo, Ya-Min [1 ]
Yang, Jin-Rong [1 ,2 ]
Chen, Jian-Zhong [1 ]
机构
[1] Zhejiang Univ, Coll Pharmaceut Sci, Hangzhou, Peoples R China
[2] Zhejiang Univ, Polytech Inst, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
hepatotoxicity; ensemble model; molecular fingerprints; machine learning; deep learning; LIVER-INJURY; DRUG;
D O I
10.3389/fphar.2024.1441587
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background Chemicals may lead to acute liver injuries, posing a serious threat to human health. Achieving the precise safety profile of a compound is challenging due to the complex and expensive testing procedures. In silico approaches will aid in identifying the potential risk of drug candidates in the initial stage of drug development and thus mitigating the developmental cost.Methods In current studies, QSAR models were developed for hepatotoxicity predictions using the ensemble strategy to integrate machine learning (ML) and deep learning (DL) algorithms using various molecular features. A large dataset of 2588 chemicals and drugs was randomly divided into training (80%) and test (20%) sets, followed by the training of individual base models using diverse machine learning or deep learning based on three different kinds of descriptors and fingerprints. Feature selection approaches were employed to proceed with model optimizations based on the model performance. Hybrid ensemble approaches were further utilized to determine the method with the best performance.Results The voting ensemble classifier emerged as the optimal model, achieving an excellent prediction accuracy of 80.26%, AUC of 82.84%, and recall of over 93% followed by bagging and stacking ensemble classifiers method. The model was further verified by an external test set, internal 10-fold cross-validation, and rigorous benchmark training, exhibiting much better reliability than the published models.Conclusion The proposed ensemble model offers a dependable assessment with a good performance for the prediction regarding the risk of chemicals and drugs to induce liver damage.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning
    Adhikari, Badri
    Hou, Jie
    Cheng, Jianlin
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2018, 86 : 84 - 96
  • [22] Dropout prediction in Moocs using deep learning and machine learning
    Ram B. Basnet
    Clayton Johnson
    Tenzin Doleck
    Education and Information Technologies, 2022, 27 : 11499 - 11513
  • [23] Application of machine learning and deep learning for the prediction of HIV/AIDS
    Alehegn, Minyechil
    HIV & AIDS REVIEW, 2022, 21 (01): : 17 - 23
  • [24] Prediction of Aureococcus anophageffens using machine learning and deep learning
    Niu, Jie
    Lu, Yanqun
    Xie, Mengyu
    Ou, Linjian
    Cui, Lei
    Qiu, Han
    Lu, Songhui
    MARINE POLLUTION BULLETIN, 2024, 200
  • [25] Ensemble Deep Learning Network Model for Dropout Prediction in MOOCs
    Kumar, Gaurav
    Singh, Amar
    Sharma, Ashok
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2023, 14 (02) : 187 - 196
  • [26] Dropout prediction in Moocs using deep learning and machine learning
    Basnet, Ram B.
    Johnson, Clayton
    Doleck, Tenzin
    EDUCATION AND INFORMATION TECHNOLOGIES, 2022, 27 (08) : 11499 - 11513
  • [27] Skin cancer detection using ensemble of machine learning and deep learning techniques
    Jitendra V. Tembhurne
    Nachiketa Hebbar
    Hemprasad Y. Patil
    Tausif Diwan
    Multimedia Tools and Applications, 2023, 82 : 27501 - 27524
  • [28] Ensemble of deep learning and machine learning approach for classification of handwritten Hindi numerals
    Rajpal D.
    Garg A.R.
    Journal of Engineering and Applied Science, 2023, 70 (01):
  • [29] Skin cancer detection using ensemble of machine learning and deep learning techniques
    Tembhurne, Jitendra V.
    Hebbar, Nachiketa
    Patil, Hemprasad Y.
    Diwan, Tausif
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (18) : 27501 - 27524
  • [30] The Significance of Machine Learning and Deep Learning Techniques in Cybersecurity: A Comprehensive Review
    Mijwil M.M.
    Salem I.E.
    Ismaeel M.M.
    Iraqi Journal for Computer Science and Mathematics, 2023, 4 (01): : 87 - 101