Gravothermal catastrophe in resonant self-interacting dark matter models

被引:5
作者
Tran, Vinh [1 ,2 ]
Gilman, Daniel [3 ]
Vogelsberger, Mark [1 ,2 ]
Shen, Xuejian [1 ,2 ]
O'Neil, Stephanie [1 ,2 ]
Zhang, Xinyue [4 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA
[3] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA
[4] Columbia Univ, Dept Ind Engn & Operat Res, New York, NY 10027 USA
关键词
COSMOLOGICAL SIMULATIONS; HALOS; MILKY; CONSTRAINTS; SIGNATURES; SUBHALOES; COLLAPSE; SIDM;
D O I
10.1103/PhysRevD.110.043048
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate a self-interacting dark matter model featuring a velocity-dependent cross section with an order-of-magnitude resonant enhancement of the cross section at 16 km s-1. To understand the implications for the structure of dark matter halos, we perform N-body simulations of isolated dark matter halos of mass 108M circle dot, a halo mass selected to have a maximum response to the resonance. We track the core formation and the gravothermal collapse phases of the dark matter halo in this model and compare the halo evolving with the resonant cross section with halos evolving with velocity-independent cross sections. We show that dark matter halo evolution with the resonant cross section exhibits a deviation from universality that characterizes halo evolution with velocity-independent cross sections. The halo evolving under the influence of the resonance reaches a lower minimum central density during core formation. It subsequently takes about 20% longer to reach its initial central density during the collapse phase. These results motivate a more detailed exploration of halo evolution in models with pronounced resonances.
引用
收藏
页数:12
相关论文
共 60 条
[1]  
Adhikari Susmita., 2022, arXiv
[2]   Self-interacting dark matter halos and the gravothermal catastrophe [J].
Balberg, S ;
Shapiro, SL ;
Inagaki, S .
ASTROPHYSICAL JOURNAL, 2002, 568 (02) :475-487
[3]  
Bechtol K, 2023, Arxiv, DOI [arXiv:2203.07354, DOI arXiv:2203.07354.v1]
[4]   Particle dark matter: evidence, candidates and constraints [J].
Bertone, G ;
Hooper, D ;
Silk, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 405 (5-6) :279-390
[5]  
Binney James., 1987, Princeton Series in Astro- physics
[6]   Gravitational probes of dark matter physics [J].
Buckley, Matthew R. ;
Peter, Annika H. G. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2018, 761 :1-60
[7]   SELF-INTERACTING DARK MATTER [J].
CARLSON, ED ;
MACHACEK, ME ;
HALL, LJ .
ASTROPHYSICAL JOURNAL, 1992, 398 (01) :43-52
[8]   A practical and consistent parametrization of dark matter self-interactions [J].
Chu, Xiaoyong ;
Garcia-Cely, Camilo ;
Murayama, Hitoshi .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (06)
[9]   Semiclassical regime for dark matter self-interactions [J].
Colquhoun, Brian ;
Heeba, Saniya ;
Kahlhoefer, Felix ;
Sagunski, Laura ;
Tulin, Sean .
PHYSICAL REVIEW D, 2021, 103 (03)
[10]   Constraining velocity-dependent self-interacting dark matter with the Milky Way's dwarf spheroidal galaxies [J].
Correa, Camila A. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 503 (01) :920-937