Integrability and chaos in the quantum brachistochrone problem

被引:1
|
作者
Malikis, S. [1 ]
Cheianov, V. [1 ]
机构
[1] Leiden Univ, Inst Lorentz, Leiden, Netherlands
基金
荷兰研究理事会;
关键词
All Open Access; Green;
D O I
10.1103/PhysRevA.110.022205
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The quantum brachistochrone problem addresses the fundamental challenge of achieving the quantum speed limit in applications aiming to realize a given unitary operation in a quantum system. Specifically, it looks into optimization of the transformation of quantum states through controlled Hamiltonians, which form a small subset in the space of the system's observables. Here we introduce a broad family of completely integrable brachistochrone protocols, which arise from a judicious choice of the control Hamiltonian subset. Furthermore, we demonstrate how the inherent stability of the completely integrable protocols makes them numerically tractable and therefore practicable as opposed to their nonintegrable counterparts.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Quantum dynamics of brachistochrone problem
    Yucel, MB
    Unal, N
    STRUCTURE AND DYNAMICS OF ELEMENTARY MATTER, 2004, 166 : 673 - 675
  • [2] Entanglement and the quantum brachistochrone problem
    Borras, A.
    Zander, C.
    Plastino, A. R.
    Casas, M.
    Plastino, A.
    EPL, 2008, 81 (03)
  • [3] Quantum integrability and quantum chaos in the micromaser
    Bullough, RK
    Bogolyubov, NM
    Puri, RR
    THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 122 (02) : 151 - 169
  • [4] Quantum integrability and quantum chaos in the micromaser
    R. K. Bullough
    N. M. Bogolyubov
    R. R. Puri
    Theoretical and Mathematical Physics, 2000, 122 : 151 - 169
  • [5] The brachistochrone problem in open quantum systems
    Rotter, Ingrid
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (48) : 14515 - 14526
  • [6] From integrability to chaos in quantum Liouvillians
    Rubio-Garcia, Alvaro
    Molina, Rafael A.
    Dukelsky, Jorge
    SCIPOST PHYSICS CORE, 2022, 5 (02):
  • [7] Integrability and chaos in classical and quantum mechanics
    Prigogine, I.
    Petrosky, T.Y.
    Hasegawa, H.H.
    Tasaki, S.
    Chaos, solitons and fractals, 1991, 1 (01): : 3 - 24
  • [8] THE PROBLEM OF QUANTUM INTEGRABILITY
    WEIGERT, S
    PHYSICA D, 1992, 56 (01): : 107 - 119
  • [9] Quantum and classical dynamics correspondence and the brachistochrone problem
    Fanchiotti, Huner
    Canal, Carlos A. Garcia
    Mayosky, Miguel
    Perez, Armando
    Veiga, Alejandro
    PHYSICAL REVIEW A, 2024, 110 (04)
  • [10] Integrability and quantum chaos in spin glass shards
    Georgeot, B
    Shepelyansky, DL
    PHYSICAL REVIEW LETTERS, 1998, 81 (23) : 5129 - 5132