Upcycling food waste as a low-cost cultivation medium for Chlorella sp. microalgae

被引:3
|
作者
Ramandani, Adityas Agung [1 ]
Sun, Yi-Ming [1 ]
Lan, John Chi-Wei [2 ]
Lim, Jun Wei [3 ]
Chang, Jo-Shu [4 ,5 ]
Srinuanpan, Sirasit [6 ,7 ,8 ]
Khoo, Kuan Shiong [1 ]
机构
[1] Yuan Ze Univ, Dept Chem Engn & Mat Sci, Algae Bioseparat Res Lab, Taoyuan, Taiwan
[2] Yuan Ze Univ, Dept Chem Engn & Mat Sci, Biorefinery & Bioproc Engn Lab, Taoyuan, Taiwan
[3] Univ Teknol PETRONAS, Inst Sustainable Energy & Resources, HICoE Ctr Biofuel & Biochem Res, Dept Fundamental & Appl Sci, Seri Iskandar, Perak Darul Rid, Malaysia
[4] Tunghai Univ, Res Ctr Smart Sustainable Circular Econ, Taichung, Taiwan
[5] Tunghai Univ, Dept Chem & Mat Engn, Taichung, Taiwan
[6] Chiang Mai Univ, Ctr Excellence Microbial Divers & Sustainable Util, Chiang Mai 50200, Thailand
[7] Chiang Mai Univ, Fac Engn, Chiang Mai Res Ctr Carbon Capture & Storage, Chiang Mai, Thailand
[8] Chiang Mai Univ, Off Univ, Off Res Adm, Chiang Mai, Thailand
关键词
food waste management; upcycling food waste; Chlorella sp. microalgae; alternative culture medium; net zero emission; circular bioeconomy; HYDROTHERMAL LIQUEFACTION; LIPID PRODUCTION; NUTRIENT SOURCE; INOCULUM SIZE; GROWTH; EXTRACTION; VULGARIS; CULTURE; COMPOST; CO2;
D O I
10.1002/jsfa.13910
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
BACKGROUND: Global food loss and waste have raised environmental concerns regarding the generation of greenhouse gases (e.g., carbon dioxide and methane gas), which directly contribute to climate change. To address these concerns, the present research aims to upcycle food waste into an alternative culture medium for the cultivation of microalgae. Various parameters including pretreatment of food waste (i.e., autoclave and non-autoclave), concentration of food waste culture medium (i.e., 10%, 30%, 50%, 70%, 90% and 100%), harvesting efficiency and biochemical compounds of Chlorella sp. microalgae were carried out. RESULTS: Based on the preliminary findings, the highest biomass concentration obtained from 10% food waste culture medium in the autoclave for Chlorella sp., including strains FSP-E, ESP-31 and CY-1, were 2.869 +/- 0.022, 2.385 +/- 0.018 and 0.985 +/- 0.0026 g L-1, respectively. Since Chlorella vulgaris FSP-E exhibited the highest biomass concentration, this microalgal strain was selected to examine the subsequent parameters. Cultivation of C. vulgaris FSP-E in 100FW achieves a biomass concentration of 4.465 +/- 0.008 g L-1 with biochemical compounds of 6.94 +/- 1.396, 248.24 +/- 0.976 and 406.23 +/- 0.593 mg g(-1) for lipids, carbohydrates and proteins, respectively. CONCLUSION: This study shows that using food waste as an alternative culture medium for C. vulgaris FSP-E can achieve substantial biomass productivity and biochemical content. This research work would contribute to the concept of net zero emission and transitioning toward a circular bioeconomy by upcycling food waste as an alternative culture medium for the cultivation of microalgae.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Single cell protein production of Chlorella sp. using food processing waste as a cultivation medium
    Putri, D.
    Ulhidayati, A.
    Musthofa, I. A.
    Wardani, A. K.
    INTERNATIONAL CONFERENCE ON GREEN AGRO-INDUSTRY AND BIOECONOMY (ICGAB 2017), 2018, 131
  • [2] Application of Liquid Waste from Biogas Production for Microalgae Chlorella sp. Cultivation
    Sendzikiene, Egle
    Makareviciene, Violeta
    CELLS, 2022, 11 (07)
  • [3] Vinasse as Cultivation Medium of Chlorella sp. to Produce Poly-Hydroxy Butyrate in Various Limited Low-Cost Primary Nutrient
    Budianto, Gregorius Prima Indra
    Wibowo, Yari Mukti
    Hadiyanto, Hadiyanto
    Widayat, Widayat
    Sudjarwo, Wisnu Arfian Anditya
    1ST INTERNATIONAL CONFERENCE ON BIOENERGY AND ENVIRONMENTALLY SUSTAINABLE AGRICULTURE TECHNOLOGY (ICON BEAT 2019), 2021, 226
  • [4] The effects of glucose, nitrate, and pH on cultivation of Chlorella sp. Microalgae
    Nouri, H.
    Roushandeh, J. Mohammadi
    Hallajisani, A.
    Golzary, A.
    Daliry, S.
    GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM, 2021, 7 (01): : 103 - 116
  • [5] CULTIVATION OF Chlorella sp. MICROALGAE IN BATCH CULTURE: CELL GROWTH KINETICS
    Infante, Cherlys
    Angulo, Edgardo
    Zarate, Ana
    Florez, July Z.
    Barriosl, Freddy
    Zapatal, Cindy
    AVANCES EN CIENCIAS E INGENIERIA, 2012, 3 (02): : 159 - 164
  • [6] Recovery of landfill leachate as culture medium for two microalgae: Chlorella sp. and Scenedesmus sp.
    Maroua El Ouaer
    Nejib Turki
    Amjad Kallel
    Mansour Halaoui
    Ismail Trabelsi
    Abdennaceur Hassen
    Environment, Development and Sustainability, 2020, 22 : 2651 - 2671
  • [7] Recovery of landfill leachate as culture medium for two microalgae: Chlorella sp. and Scenedesmus sp.
    El Ouaer, Maroua
    Turki, Nejib
    Kallel, Amjad
    Halaoui, Mansour
    Trabelsi, Ismail
    Hassen, Abdennaceur
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2020, 22 (03) : 2651 - 2671
  • [8] Cultivation and Biorefinery of Microalgae (Chlorella sp.) for Producing Biofuels and Other Byproducts: A Review
    Kuo, Chiu-Mei
    Sun, Yu-Ling
    Lin, Cheng-Han
    Lin, Chao-Hsu
    Wu, Hsi-Tien
    Lin, Chih-Sheng
    SUSTAINABILITY, 2021, 13 (23)
  • [9] Synthesis of polysaccharides by microalgae Chlorella sp.
    Babich, Olga
    Ivanova, Svetlana
    Michaud, Philippe
    Budenkova, Ekaterina
    Kashirskikh, Egor
    Anokhova, Veronika
    Sukhikh, Stanislav
    BIORESOURCE TECHNOLOGY, 2024, 406
  • [10] Upcycling food waste into biorefinery production by microalgae
    Wang, Jia
    Wang, Yuxin
    Xiao, Mengshi
    Liang, Qingping
    Yang, Shufang
    Liu, Jin
    Zhang, Yifeng
    Mou, Haijin
    Sun, Han
    CHEMICAL ENGINEERING JOURNAL, 2024, 484