FCOS-Based Anchor-Free Ship Detection Method for Consumer Electronic UAV Systems

被引:0
|
作者
Yang, Zijia [1 ]
Wen, Long [2 ]
Deng, Jiangtao [3 ]
Tao, Jianlin [4 ]
Liu, Zhenhong [5 ]
Liu, Danxia [6 ]
机构
[1] Zhejiang A&F Univ, Coll Math & Comp Sci, Hangzhou 311300, Peoples R China
[2] Macau Univ Sci & Technol, Sch Innovat Engn, Macau, Peoples R China
[3] Hangzhou Dianzi Univ, Sch Automat, Sch Artificial Intelligence, Hangzhou 310018, Peoples R China
[4] Coll Informat & Design, Zhejiang Ind Polytech Coll, Shaoxing 312099, Peoples R China
[5] Northeast Elect Power Univ, Coll Comp Sci, Jilin 132012, Peoples R China
[6] Quzhou Hydrol & Flood Drought Hazard Control Ctr, Quzhou 324003, Peoples R China
关键词
Marine vehicles; Object detection; Feature extraction; Autonomous aerial vehicles; Accuracy; Remote sensing; Consumer electronics; Consumer electronic UAV systems; FCOS; ship detection; remote sensing; attention mechanism; anchor-free;
D O I
10.1109/TCE.2024.3371163
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The emergence of consumer electronic Unmanned Aerial Vehicle (UAV) systems has brought innovation to the field of ship inspection. Traditional ship detection is carried out through traditional target recognition methods, but the efficiency and accuracy cannot meet the requirements. With the major breakthrough in the resolution of remote sensing images, it has become possible to use UAV to capture remote sensing images to detect ships. In this paper, object detection technology based on deep learning is used to improve the current detection methods and achieve accurate ship target detection. We propose an anchor-free detection method based on FCOS to reduce model hyperparameters. Meanwhile, a positive and negative sample selection method is put forth based on attention mechanism feature fusion and self-adaptation to enhance the fusion expression of features and improve the efficiency of sample selection, therefore improving the accuracy of the model. Experiments demonstrate notable progress in the detection accuracy from the proposed method, especially when small ship targets are concerned. Compared with Faster R-CNN and R3Det, the method introduced in this paper needs fewer hyperparameters, while achieving higher detection accuracy, with AP50 reaching 83.90%.
引用
收藏
页码:4988 / 4997
页数:10
相关论文
共 50 条
  • [21] RBFPDet: An anchor-free helmet wearing detection method
    Song, Renjie
    Wang, Ziming
    APPLIED INTELLIGENCE, 2023, 53 (05) : 5013 - 5028
  • [22] An Anchor-Free Pipeline MFL Image Detection Method
    Han, Fucheng
    Lang, Xianming
    Liu, Mingyang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [23] Ship’s critical part detection algorithm based on anchor-free in optical remote sensing
    Zhang D.
    Wang C.
    Fu Q.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (04): : 1365 - 1374
  • [24] BANet: A Balance Attention Network for Anchor-Free Ship Detection in SAR Images
    Hu, Qi
    Hu, Shaohai
    Liu, Shuaiqi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [25] Analysis of Scale Sensitivity of Ship Detection in an Anchor-Free Deep Learning Framework
    Jiang, Yongxin
    Huang, Li
    Zhang, Zhiyou
    Nie, Bu
    Zhang, Fan
    ELECTRONICS, 2023, 12 (01)
  • [26] OFCOS: An Oriented Anchor-Free Detector for Ship Detection in Remote Sensing Images
    Zhang, Dongdong
    Wang, Chunping
    Fu, Qiang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [27] A Lightweight Position-Enhanced Anchor-Free Algorithm for SAR Ship Detection
    Feng, Yun
    Chen, Jie
    Huang, Zhixiang
    Wan, Huiyao
    Xia, Runfan
    Wu, Bocai
    Sun, Long
    Xing, Mengdao
    REMOTE SENSING, 2022, 14 (08)
  • [28] Improved YOLOX's Anchor-Free SAR Image Ship Target Detection
    Peng, Hui
    Tan, Xiandong
    IEEE ACCESS, 2022, 10 : 70001 - 70015
  • [29] Fabric defect detection based on anchor-free network
    Wang, Xianbao
    Fang, Weijie
    Xiang, Sheng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (12)
  • [30] An Anchor-Free Detection Algorithm for SAR Ship Targets with Deep Saliency Representation
    Lv, Jianming
    Chen, Jie
    Huang, Zhixiang
    Wan, Huiyao
    Zhou, Chunyan
    Wang, Daoyuan
    Wu, Bocai
    Sun, Long
    REMOTE SENSING, 2023, 15 (01)