Electrohydrodynamic (EHD) jet printing of carbon-black composites for solution-processed organic field-effect transistors

被引:26
作者
Li, Xinlin [1 ,2 ]
Go, Myeongjong [3 ]
Lim, Sooman [3 ,4 ]
An, Tae Kyu [5 ]
Jeong, Yong Jin [6 ]
Kim, Se Hyun [2 ,7 ,8 ]
机构
[1] Qingdao Univ, Coll Electromech Engn, Qingdao 266071, Shandong, Peoples R China
[2] Yeungnam Univ, Dept Mech Engn Sci, Gyongsan 38541, South Korea
[3] Chonbuk Natl Univ, Grad Sch Flexible & Printable Elect, Jeonju 54896, South Korea
[4] LANL CBNU Engn Inst, Jeonju, South Korea
[5] Korea Natl Univ Transportat, Dept Polymer Sci & Engn & IT Convergence, Chungju 27469, South Korea
[6] Korea Natl Univ Transportat, Dept Mat Sci & Engn, Chungju 27469, South Korea
[7] Yeungnam Univ, Dept Adv Organ Mat Engn, Gyongsan 38541, South Korea
[8] Yeungnam Univ, Sch Chem Engn, Gyongsan 38541, South Korea
基金
新加坡国家研究基金会;
关键词
Electrohydrodynamic printing; Carbon black; Dispersion; TX-100; 6,13-bis(triisopropylsilylethynyl)pentacene; Organic field-effect transistor; THIN-FILM TRANSISTORS; HIGH-RESOLUTION; PERFORMANCE; GRAPHENE; ELECTRODES; NANOTUBES;
D O I
10.1016/j.orgel.2019.06.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, carbon-black (CB) conducive electrodes were successfully printed using the high-resolution electrohydrodynamic (EHD) jet printing technique. The wrapping of CB bundles with a polymeric surfactant, Triton X-100 (TX-100), enabled the CB/TX-100 composites to well disperse in ethanol/deionized water for use in the preparation of conducive inks for EHD jet printing. By adjusting the voltage and operation distance, the applied electrostatic and gravity forces to the loaded CB/TX-100 inks overcame the fluid forces (viscosity and surface tension) to elongate the droplet and provide continuous jet lines, where the ink widths were smaller than the diameter of the nozzle. The EHD-printed CB/TX-100 in the stable cone-jet mode formed conducive lines and various pattern shapes. These conducive lines were utilized as source and drain electrodes of organic field-effect transistors (OFETs) with solution-processed organic semiconductors. The OFET with printed CB/TX-100 electrodes exhibited better electrical performances, including a higher saturation mobility and smaller hysteresis, than those of the reference OFET with Au electrodes.
引用
收藏
页码:279 / 285
页数:7
相关论文
共 50 条
  • [31] Morphology Influence on the Mechanical Stress Response in Bendable Organic Field-Effect Transistors with Solution-Processed Semiconductors
    Lai, Stefano
    Temino, Ines
    Cramer, Tobias
    del Pozo, Freddy G.
    Fraboni, Beatrice
    Cosseddu, Piero
    Bonfiglio, Annalisa
    Mas-Torrent, Marta
    ADVANCED ELECTRONIC MATERIALS, 2018, 4 (10):
  • [32] Solution-processed organic field-effect transistors patterned by self-assembled monolayers of octadecyltrichlorosilane and phenyltrichlorosilane
    Kim, Sung-Jin
    Ryu, Kyungsun
    Chang, Seung Wook
    JOURNAL OF MATERIALS SCIENCE, 2010, 45 (02) : 566 - 569
  • [33] Solution-Processed Flexible Organic Field-Effect Transistors with Biodegradable Gelatin as the Dielectric Layer: An Approach Toward Biodegradable Systems
    Raghuwanshi, Vivek
    Saxena, Pulkit
    Rahi, Sachin
    Mahato, Ajay Kumar
    Varun, Ishan
    Tiwari, Shree Prakash
    ACS APPLIED ELECTRONIC MATERIALS, 2020, 2 (10) : 3373 - 3379
  • [34] Towards sustainable, solution-processed organic field-effect transistors using cashew gum as the gate dielectric
    Faraji, Sheida
    Tall, Abdoulaye
    Mohammadian, Navid
    Seck, Mane
    Saadi, Meriem
    Tavasli, Aybuke
    Erouel, Mohsen
    Khirouni, Kamel
    Diallo, Abdou Karim
    Majewski, Leszek A.
    FRONTIERS IN MATERIALS, 2023, 10
  • [35] Solvent-dependent performance of solution-processed small-molecule organic field-effect transistors
    Lee, Jin-Ho
    Kim, Sunkook
    Kim, Haekyoung
    Lee, Jiyoul
    ORGANIC ELECTRONICS, 2018, 52 : 184 - 189
  • [36] High-mobility solution-processed copper phthalocyanine-based organic field-effect transistors
    Chaure, Nandu B.
    Cammidge, Andrew N.
    Chambrier, Isabelle
    Cook, Michael J.
    Cain, Markys G.
    Murphy, Craig E.
    Pal, Chandana
    Ray, Asim K.
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2011, 12 (02)
  • [37] Low-Voltage Organic Field-Effect Transistors (OFETs) with Solution-Processed Metal-Oxide as Gate Dielectric
    Su, Yaorong
    Wang, Chengliang
    Xie, Weiguang
    Xie, Fangyan
    Chen, Jian
    Zhao, Ni
    Xu, Jianbin
    ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (12) : 4662 - 4667
  • [38] Ferroelectric field-effect transistors based on solution-processed electrochemically exfoliated graphene
    Heidler, Jonas
    Yang, Sheng
    Feng, Xinliang
    Muellen, Klaus
    Asadi, Kamal
    SOLID-STATE ELECTRONICS, 2018, 144 : 90 - 94
  • [39] Solution-processed natural gelatin was used as a gate dielectric for the fabrication of oxide field-effect transistors
    He, Yinke
    Sun, Jia
    Qian, Chuan
    Kong, Ling-an
    Jiang, Jie
    Yang, Junliang
    Li, Hongjian
    Gao, Yongli
    ORGANIC ELECTRONICS, 2016, 38 : 357 - 361
  • [40] Doping Polymer Semiconductors by Organic Salts: Toward High-Performance Solution-Processed Organic Field-Effect Transistors
    Hu, Yuanyuan
    Rengert, Zachary D.
    McDowell, Caitlin
    Ford, Michael J.
    Wang, Ming
    Karki, Akchheta
    Lill, Alexander T.
    Bazan, Guillermo C.
    Thuc-Quyen Nguyen
    ACS NANO, 2018, 12 (04) : 3938 - 3946