LEFSCHETZ NUMBER FORMULA FOR SHIMURA VARIETIES OF HODGE TYPE

被引:0
作者
Lee, Dong Uk [1 ]
机构
[1] Chungnam Natl Univ, Math Sci Res Inst, 34134,99 Daehang Ro, Daejeon, Chungcheongnam, South Korea
关键词
Shimura varieties; Lefschetz number formula; Langlands-Kottwitz method; VERDIER TRACE FORMULA; ISOGENY CLASSES; ISOCRYSTALS; REDUCTION; POINTS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any Shimura variety of Hodge type with hyperspecial level at a prime p and automorphic lisse sheaf on it, we prove a formula, conjectured by Kottwitz [Kot90], for the Lefschetz numbers of Frobenius-twisted Hecke correspondences acting on the compactly supported & eacute;tale cohomology. Our proof is an adaptation of the arguments of Langlands and Rapoport [LR87] of deriving the Kottwitz's formula from their conjectural description of the set of mod-p points of Shimura variety (Langlands-Rapoport conjecture), but replaces their Galois gerb theoretic arguments by more standard group-theoretic ones, using Kisin's geometric work [Kis17]. We also prove a generalization of Honda-Tate theorem in the context of Shimura varieties and fix an error in the Kisin's work. We do not assume that the derived group is simply connected
引用
收藏
页码:103 / 196
页数:94
相关论文
共 53 条
[41]   A positivity property of the Satake isomorphism [J].
Rapoport, M .
MANUSCRIPTA MATHEMATICA, 2000, 101 (02) :153-166
[42]  
Scholze P, 2013, J AM MATH SOC, V26, P261
[43]  
Serre J. -P., 2002, SPRINGER MG MATH
[44]  
SPRINGER T. A., 1979, P S PURE MATH, VXXXIII, P29
[45]   REGULAR ELEMENTS OF FINITE REFLECTION GROUPS [J].
SPRINGER, TA .
INVENTIONES MATHEMATICAE, 1974, 25 (02) :159-198
[46]  
Tate J., 1971, Seminaire Bourbaki. Vol. 1968/69: Exposes 347-363, P95
[47]  
Tate J., 1966, INVENT MATH, V2, P134, DOI [10.1007/BF01404549, DOI 10.1007/BF01404549]
[48]  
Tits J., 1979, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., P29
[49]  
Lee DU, 2018, Arxiv, DOI arXiv:1801.03057
[50]   Lefschetz-Verdier trace formula and a generalization of a theorem of Fujiwara [J].
Varshavsky, Yakov .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (01) :271-319