Multivariate analysis of phenotypic diversity elite bread wheat (Triticum aestivum L.) genotypes from ICARDA in Ethiopia

被引:0
|
作者
Mulugeta, Tesfaye [1 ]
Abate, Alemu [2 ]
Tadesse, Wuletaw [3 ]
Woldeyohannes, Aemiro Bezabih [1 ]
Tefera, Neway [1 ]
Shiferaw, Wondwosen [4 ]
Tiruneh, Altaye [1 ]
机构
[1] Debre Birhan Agr Res Ctr, Plant Breeding Dept, Debre Birhan, Ethiopia
[2] Bahirdar Univ, Dept Plant Sci, Bahirdar, Ethiopia
[3] Int Ctr Agr Res Dry Areas ICARDA, Rabat, Morocco
[4] Ethiopian Inst Agr Res EIAR, Addis Ababa, Ethiopia
关键词
Bread wheat; Genetic divergence; Heritability; Yellow rust; RUST RESISTANCE; YELLOW RUST; YIELD; GERMPLASM; TRAITS;
D O I
10.1016/j.heliyon.2024.e36062
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Wheat is an important crop for food security, providing a source of protein and energy for the growing population in Ethiopia. However, both biotic and abiotic factors limit national wheat productivity. The availability of genetically diverse wheat genotypes is crucial for developing new wheat varieties that are both high-yielding and resilient to stress. Therefore, this field trial aimed to assess phenotypic variation and relationship among ICARDA-derived bread wheat genotypes using multivariate analysis techniques. The trial was conducted at three locations: Enewari, Wogere, and Kulumsa using an alpha lattice design with two replications during the main cropping seasons of 2022 and 2023. Phenotypic data on eight agronomic traits and the severity of yellow rust were collected and R programming was used for data analysis. Individual and combined location data analysis of variance showed significant differences (p <= 0.05) among genotypes for most of the studied traits. The highest heritability and genetic advance as a percentage of the mean were observed in days to heading (90.8, 21.29), plant height (72.4, 28.6), seeds per spike (61.7, 28), thousand kernel weight (61.9, 12), and area under the disease progress curve (67, 39.8), suggesting a predominance of additive gene action. Grain yield showed a strong positive correlation with days to maturity, plant height, spike length, spikelet per spike, and thousand kernel weight for each location. Dendrogram and phylogenetic tree methods were used to group genotypes into four genetically distinct clusters. Cluster II and III had the greatest intercluster distance, indicating higher diversity among their genotypes. This study identified new candidate genotypes with superior agronomic performance, high grain yield traits, and robust resistance to yellow rust, making them valuable for both current and future wheat breeding programs. Additionally, the comprehensive dataset produced in this study could facilitate the identification of genetic variations influencing desirable traits through genome-wide association analysis.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] COMPARATIVE PERFORMANCE OF TWO BREAD WHEAT (TRITICUM AESTIVUM L.) GENOTYPES UNDER SALINITY STRESS
    Yassin, M.
    El Sabagh, A.
    Mekawy, A. M. M.
    Islam, M. S.
    Hossain, A.
    Barutcular, C.
    Alharby, H.
    Bamagoos, A.
    Liu, L.
    Ueda, A.
    Saneoka, H.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2019, 17 (02): : 5029 - 5041
  • [42] Identification of high yielding, salt tolerant and stable genotypes of bread wheat (Triticum aestivum L.)
    Yadav, S. K.
    Raje, R. S.
    Maloo, S. R.
    INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 2009, 69 (04) : 394 - 399
  • [43] Assessing the Adaptive Mechanisms of Two Bread Wheat (Triticum aestivum L.) Genotypes to Salinity Stress
    Ibrahimova, Ulkar
    Suleymanova, Zarifa
    Brestic, Marian
    Mammadov, Alamdar
    Ali, Omar M.
    Abdel Latef, Arafat Abdel Hamed
    Hossain, Akbar
    AGRONOMY-BASEL, 2021, 11 (10):
  • [44] AGRONOMIC EVALUATION OF DIFFERENT BREAD WHEAT (TRITICUM AESTIVUM L.) GENOTYPES FOR TERMINAL HEAT STRESS
    Khan, Muhammad Irfaq
    Mohammad, Tila
    Subhan, Fazle
    Amin, Muhamad
    Shah, Syed Tariq
    PAKISTAN JOURNAL OF BOTANY, 2007, 39 (07) : 2415 - 2425
  • [45] Evaluation of Bread Wheat (Triticum aestivum L.) Germplasm at Kafa Zone, South West Ethiopia
    Gebremariam, Kochito
    Alamirew, Sintayehu
    Gebreselassie, Wosene
    ADVANCES IN AGRICULTURE, 2022, 2022
  • [46] Resistance of bread wheat (Triticum aestivum L.) to preharvest sprouting: An association analysis
    S. P. Martynov
    T. V. Dobrotvorskaya
    Russian Journal of Genetics, 2012, 48 : 975 - 984
  • [47] Exploration of Piezo Channels in Bread Wheat (Triticum aestivum L.)
    Kaur, Amandeep
    Madhu, Alok
    Sharma, Alok
    Singh, Kashmir
    Upadhyay, Santosh Kumar
    AGRICULTURE-BASEL, 2023, 13 (04):
  • [48] Stability Performance of Bread Wheat (Triticum aestivum L.) Lines
    Polat, P. O. Kurt
    Cifci, E. A.
    Yagdi, K.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2016, 18 (02): : 553 - 560
  • [49] GENETIC VARIABILITY AND CORRELATION ANALYSIS OF BREAD WHEAT (TRITICUM AESTIVUM L.) ACCESSIONS
    Mohibullah, Muhammad
    Rabbani, Malik Ashiq
    Jehan, Shah Zakiullah
    Amin, Adnan
    Ghazanfarullah
    PAKISTAN JOURNAL OF BOTANY, 2011, 43 (06) : 2717 - 2720
  • [50] Genetic Dissection of Drought Tolerance of Elite Bread Wheat (Triticum aestivum L.) Genotypes Using Genome Wide Association Study in Morocco
    El Gataa, Zakaria
    Samir, Karima
    Tadesse, Wuletaw
    PLANTS-BASEL, 2022, 11 (20):