Multivariate analysis of phenotypic diversity elite bread wheat (Triticum aestivum L.) genotypes from ICARDA in Ethiopia

被引:0
|
作者
Mulugeta, Tesfaye [1 ]
Abate, Alemu [2 ]
Tadesse, Wuletaw [3 ]
Woldeyohannes, Aemiro Bezabih [1 ]
Tefera, Neway [1 ]
Shiferaw, Wondwosen [4 ]
Tiruneh, Altaye [1 ]
机构
[1] Debre Birhan Agr Res Ctr, Plant Breeding Dept, Debre Birhan, Ethiopia
[2] Bahirdar Univ, Dept Plant Sci, Bahirdar, Ethiopia
[3] Int Ctr Agr Res Dry Areas ICARDA, Rabat, Morocco
[4] Ethiopian Inst Agr Res EIAR, Addis Ababa, Ethiopia
关键词
Bread wheat; Genetic divergence; Heritability; Yellow rust; RUST RESISTANCE; YELLOW RUST; YIELD; GERMPLASM; TRAITS;
D O I
10.1016/j.heliyon.2024.e36062
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Wheat is an important crop for food security, providing a source of protein and energy for the growing population in Ethiopia. However, both biotic and abiotic factors limit national wheat productivity. The availability of genetically diverse wheat genotypes is crucial for developing new wheat varieties that are both high-yielding and resilient to stress. Therefore, this field trial aimed to assess phenotypic variation and relationship among ICARDA-derived bread wheat genotypes using multivariate analysis techniques. The trial was conducted at three locations: Enewari, Wogere, and Kulumsa using an alpha lattice design with two replications during the main cropping seasons of 2022 and 2023. Phenotypic data on eight agronomic traits and the severity of yellow rust were collected and R programming was used for data analysis. Individual and combined location data analysis of variance showed significant differences (p <= 0.05) among genotypes for most of the studied traits. The highest heritability and genetic advance as a percentage of the mean were observed in days to heading (90.8, 21.29), plant height (72.4, 28.6), seeds per spike (61.7, 28), thousand kernel weight (61.9, 12), and area under the disease progress curve (67, 39.8), suggesting a predominance of additive gene action. Grain yield showed a strong positive correlation with days to maturity, plant height, spike length, spikelet per spike, and thousand kernel weight for each location. Dendrogram and phylogenetic tree methods were used to group genotypes into four genetically distinct clusters. Cluster II and III had the greatest intercluster distance, indicating higher diversity among their genotypes. This study identified new candidate genotypes with superior agronomic performance, high grain yield traits, and robust resistance to yellow rust, making them valuable for both current and future wheat breeding programs. Additionally, the comprehensive dataset produced in this study could facilitate the identification of genetic variations influencing desirable traits through genome-wide association analysis.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Field response and genetic variability of elite spring bread wheat (Triticum aestivum L.) genotypes for septoria tritici blotch under natural infection in Northwest Ethiopia
    Kassie, Molla Mekonnen
    Abebe, Tiegist Dejene
    Desta, Ermias Abate
    Aseress, Tazebachew
    Tadesse, Wuletaw
    PLANT BREEDING, 2024, 143 (04) : 447 - 456
  • [32] Genome wide association study for stripe rust resistance in elite spring bread wheat genotypes (Triticum aestivum L.) in Morocco
    El Messoadi, Khalil
    Rochdi, Atmane
    El Yacoubi, Houda
    Wuletaw, Tadesse
    PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 2023, 127
  • [33] Characterization and Expression Analysis of Phytoene Synthase from Bread Wheat (Triticum aestivum L.)
    Flowerika
    Alok, Anshu
    Kumar, Jitesh
    Thakur, Neha
    Pandey, Ashutosh
    Pandey, Ajay Kumar
    Upadhyay, Santosh Kumar
    Tiwari, Siddharth
    PLOS ONE, 2016, 11 (10):
  • [34] Genetic diversity analysis of Azerbaijani bread wheat (Triticum aestivum L.) genotypes with simple sequence repeat markers linked to drought tolerance
    Mammadova, Ruhangiz
    Akparov, Zeynal
    Amri, Ahmad
    Bakhsh, Allah
    Alo, Fida
    Alizade, Shader
    Amrahov, Nurlan
    Yunisova, Firuza
    GENETIC RESOURCES AND CROP EVOLUTION, 2025, 72 (01) : 315 - 323
  • [35] Genetic Diversity, Population Structure, and Linkage Disequilibrium in Bread Wheat (Triticum aestivum L.)
    Tascioglu, Tulin
    Metin, Ozge Karakas
    Aydin, Yildiz
    Sakiroglu, Muhammet
    Akan, Kadir
    Uncuoglu, Ahu Altinkut
    BIOCHEMICAL GENETICS, 2016, 54 (04) : 421 - 437
  • [36] Genetic Diversity, Population Structure, and Linkage Disequilibrium in Bread Wheat (Triticum aestivum L.)
    Tulin Tascioglu
    Ozge Karakas Metin
    Yildiz Aydin
    Muhammet Sakiroglu
    Kadir Akan
    Ahu Altinkut Uncuoglu
    Biochemical Genetics, 2016, 54 : 421 - 437
  • [37] GENTETIC VARIABILITY, CORRELATION AND DIVERSITY STUDIES IN BREAD WHEAT (Triticum aestivum L.) GERMPLASM
    Kalimullah
    Khan, S. J.
    Irfaq, M.
    Rahman, H. U.
    JOURNAL OF ANIMAL AND PLANT SCIENCES-JAPS, 2012, 22 (02): : 330 - 333
  • [38] Genetic Diversity and Population Structure Analysis of European Hexaploid Bread Wheat (Triticum aestivum L.) Varieties
    Nielsen, Nanna Hellum
    Backes, Gunter
    Stougaard, Jens
    Andersen, Stig Uggerhoj
    Jahoor, Ahmed
    PLOS ONE, 2014, 9 (04):
  • [39] Salinity-Induced Changes in the Nutritional Quality of Bread Wheat (Triticum aestivum L.) Genotypes
    Nadeem, Muhammad
    Tariq, Muhammad Nouman
    Amjad, Muhammad
    Sajjad, Muhammad
    Akram, Muhammad
    Imran, Muhammad
    Shariati, Mohammad Ali
    Gonda, Tanweer Aslam
    Kenijz, Nadezhda
    Kulikov, Dmitriy
    AGRIVITA, 2020, 42 (01): : 1 - 12
  • [40] Effectiveness of drought tolerance indices to identify tolerant genotypes in bread wheat (Triticum aestivum L.)
    El-Rawy M.A.
    Hassan M.I.
    Journal of Crop Science and Biotechnology, 2014, 17 (4) : 255 - 266