rock mass;
stochastic structural planes;
Monte Carlo method;
Copula;
deep learning;
denoising diffusion probabilistic model (DDPM);
generative adversarial networks (GAN);
RAINFALL DATA;
DAM SITE;
FRACTURE;
DISTRIBUTIONS;
SIMULATION;
GEOMETRY;
BLOCKS;
D O I:
10.3390/math12162545
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Structural planes are one of the key factors controlling the stability of rock masses. A comprehensive understanding of the spatial distribution characteristics of structural planes is essential for accurately identifying key blocks, analyzing rock mass stability, and addressing various rock engineering challenges. This study compares the effectiveness of four stochastic structural plane generation methods-the Monte Carlo method, the Copula-based method, generative adversarial networks (GAN), and denoised diffusion models (DDPM)-in generating stochastic structural planes and capturing potential correlations between structural plane parameters. The Monte Carlo method employs the mean and variance of three parameters of the measured factual structural planes to generate data that follow the same distributions. The other three methods take the entire set of measured factual structural planes as the overall input to generate structural planes that exhibit the same probability distributions. Five sets of structural planes on four rock slopes in Norway are examined as an example. The validation and analysis were performed using histogram comparison, data feature comparison, scatter plot comparison, and linear regression analysis. The results show that the Monte Carlo method fails to capture the potential correlation between the dip direction and dip angle despite the best fit to the measured factual structural planes. The Copula-based method performs better with smaller datasets, and GAN and DDPM are better at capturing the correlation of measured factual structural planes in the case of large datasets. Therefore, in the case of a limited number of measured structural planes, it is advisable to employ the Copula-based method. In scenarios where the dataset is extensive, the deep generative model is recommended due to its ability to capture complex data structures. The results of this study can be utilized as a valuable point of reference for the accurate generation of stochastic structural planes within rock masses.
机构:
Harvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USAHarvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USA
Frazer, Jonathan
Notin, Pascal
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oxford, Dept Comp Sci, OATML Grp, Oxford, EnglandHarvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USA
Notin, Pascal
Dias, Mafalda
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USAHarvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USA
Dias, Mafalda
Gomez, Aidan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oxford, Dept Comp Sci, OATML Grp, Oxford, EnglandHarvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USA
Gomez, Aidan
Min, Joseph K.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USAHarvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USA
Min, Joseph K.
Brock, Kelly
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USAHarvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USA
Brock, Kelly
Gal, Yarin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oxford, Dept Comp Sci, OATML Grp, Oxford, EnglandHarvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USA
Gal, Yarin
Marks, Debora S.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USA
Broad Inst Harvard & MIT, Cambridge, MA 02142 USAHarvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USA
机构:
Harvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USAHarvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USA
Frazer, Jonathan
Notin, Pascal
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oxford, Dept Comp Sci, OATML Grp, Oxford, EnglandHarvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USA
Notin, Pascal
Dias, Mafalda
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USAHarvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USA
Dias, Mafalda
Gomez, Aidan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oxford, Dept Comp Sci, OATML Grp, Oxford, EnglandHarvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USA
Gomez, Aidan
Min, Joseph K.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USAHarvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USA
Min, Joseph K.
Brock, Kelly
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USAHarvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USA
Brock, Kelly
Gal, Yarin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oxford, Dept Comp Sci, OATML Grp, Oxford, EnglandHarvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USA
Gal, Yarin
Marks, Debora S.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USA
Broad Inst Harvard & MIT, Cambridge, MA 02142 USAHarvard Med Sch, Dept Syst Biol, Marks Grp, Boston, MA 02115 USA