Asymmetric CMOS switch for Dicke radiometer in millimeter-wave imaging system

被引:1
作者
Yoon, Joon-Hyuk [1 ]
Lee, Ha-Neul [1 ]
Choi, Ui-Gyu [1 ]
Yang, Jong-Ryul [1 ]
机构
[1] Konkuk Univ, Dept Elect & Elect Engn, 120 Neungdong Ro, Seoul 05029, South Korea
关键词
Asymmetric configuration; CMOS; D; -band; Dicke switch; High isolation; Low insertion loss;
D O I
10.1016/j.mejo.2024.106372
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An asymmetric Dicke switch implemented in bulk complementary metal-oxide-semiconductor (CMOS) technology is proposed to achieve high isolation and low insertion loss in the D-band. A Dicke switch eliminates the noise in the signal transmitted from the antenna, providing a high signal-to-noise ratio at the receiver front end. The proposed Dicke switch employs an asymmetric configuration for the signal transmission path and the reference noise incidence path, which overcomes the trade-off relationship between the insertion loss and isolation characteristics. The proposed asymmetric structure presents an optimum impedance in the reference component to achieve the same characteristics as those of the noise incident from the antenna port. The Dicke switch is fabricated using the 65-nm RFCMOS process with a chip size of 350 x 490 mu m2, including all the pads. The measurement results in the D-band present an insertion loss below 2.8 dB in the on-state and isolation above 22 dB in the off-state. The minimum insertion loss and maximum isolation were measured to be 1.7 dB at 155 GHz and 29 dB at 122 GHz, respectively.
引用
收藏
页数:4
相关论文
共 50 条
[41]   Modeling of Wideband Decoupling Power Line for Millimeter-Wave CMOS Circuits [J].
Goda, Ryuhei ;
Amakawa, Shuhei ;
Katayama, Kosuke ;
Takano, Kyoya ;
Yoshida, Takeshi ;
Fujishima, Minoru .
2015 IEEE INTERNATIONAL SYMPOSIUM ON RADIO-FREQUENCY INTEGRATION TECHNOLOGY (RFIT), 2015, :151-153
[42]   Millimeter-Wave Phased-Array Transceiver Using CMOS Technology [J].
Okada, Kenichi .
PROCEEDINGS OF THE 2019 IEEE ASIA-PACIFIC MICROWAVE CONFERENCE (APMC), 2019, :729-731
[43]   Millimeter-Wave Tunable Impedance Matching Network in an Advanced CMOS Process [J].
Guizan, Carla Moran ;
Baumgartner, Peter ;
Heinen, Stefan ;
Lauritano, Mario .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2024, 72 (08) :4590-4596
[44]   Millimeter-Wave CMOS Passive Filters for 5G Applications [J].
Zhu, Xi ;
Ge, Zeyu ;
Yang, Li ;
Gomez-Garcia, Roberto .
2021 IEEE MTT-S INTERNATIONAL MICROWAVE FILTER WORKSHOP (IMFW), 2021, :198-200
[45]   Millimeter-wave CMOS Circuits for a High Data Rate Wireless Transceiver [J].
Nguyen, Tai Nghia ;
Lee, Seong-Gwon ;
Hwang, Sang-Hyun ;
Lee, Jong-Wook ;
Kim, Byung-Sung .
2009 IEEE 8TH INTERNATIONAL CONFERENCE ON ASIC, VOLS 1 AND 2, PROCEEDINGS, 2009, :461-+
[46]   A Miniaturized Marchand Balun in CMOS With Improved Balance for Millimeter-Wave Applications [J].
Xu, Leijun ;
Sjoland, Henrik ;
Tormanen, Markus ;
Tired, Tobias ;
Pan, Tianhong ;
Bai, Xue .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2014, 24 (01) :53-55
[47]   A Novel Slow-Wave Structure for Millimeter-Wave Filter Application on Bulk CMOS [J].
Yang, Bo ;
Skafidas, Efstratios ;
Evans, Robin J. .
2011 IEEE RADIO AND WIRELESS SYMPOSIUM (RWS), 2011, :138-141
[48]   Observations of stratospheric and mesospheric O3 with a millimeter-wave radiometer at Rikubetsu, Japan [J].
Ohyama, Hirofumi ;
Nagahama, Tomoo ;
Mizuno, Akira ;
Nakane, Hideaki ;
Ogawa, Hideo .
EARTH PLANETS AND SPACE, 2016, 68
[49]   Slow-Wave Distributed MEMS Phase Shifter in CMOS for Millimeter-Wave Applications [J].
Verona, B. M. ;
Rehder, G. P. ;
Serrano, A. L. C. ;
Carreno, M. N. P. ;
Ferrari, P. .
2014 44TH EUROPEAN MICROWAVE CONFERENCE (EUMC), 2014, :211-214
[50]   Characteristics of 0-Ω Transmission Lines for Millimeter-Wave Circuits in 0.18 μm CMOS Technology [J].
Yamaki, Natsu ;
Takano, Kyoya ;
Umeda, Yohtaro .
PROCEEDINGS OF THE 2019 IEEE ASIA-PACIFIC MICROWAVE CONFERENCE (APMC), 2019, :1509-1511