Nickel oxide/nickel nanohybrids for oxygen and hydrogen evolution in alkaline media

被引:1
|
作者
Navarro-Pardo, Fabiola [1 ]
Selopal, Gurpreet Singh [2 ]
Hernandez-Gonzalez, Alma P. [3 ]
Ghasemy, Ebrahim [1 ]
Liu, Jiabin [1 ]
Ghuman, Kulbir K. [1 ]
Tavares, Ana C. [1 ]
Wang, Zhiming M. [4 ]
Rosei, Federico [1 ,5 ]
机构
[1] Inst Natl Rech Sci, Ctr Energie Mat Telecommun, 1650 Blvd Lionel-Boulet, Varennes, PQ J3X 1P7, Canada
[2] Dalhousie Univ, Fac Agr, Dept Engn, Truro, NS B2N 5E3, Canada
[3] Inst Tecnol Estudios Super Monterrey, Dept Chem & Nanotechnol, Monterrey, Mexico
[4] Shimmer Ctr, Tianfu Jiangxi Lab, Chengdu 641450, Peoples R China
[5] Univ Trieste, Dept Chem & Pharmaceut Sci, Via Giorgeri 1, I-34127 Trieste, Italy
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
Nickel oxide; Nickel hydroxide; Electrodes; Nickel cobalt oxide; Hydrogen evolution reaction; Water splitting; IN-SITU; HIGH-EFFICIENCY; BETA-NIOOH; SURFACE; METAL; OXIDE; HYDROXIDE; XPS; ELECTROCATALYSIS; PERFORMANCE;
D O I
10.1016/j.electacta.2024.145002
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Ni-based materials are cost-efficient electrocatalysts for the oxygen and hydrogen evolution reactions (OER and HER). Specifically, high-valence nickel oxides have been recently identified as highly active for both reactions; however, the origin of their activity during operation, particularly towards the HER, is still undefined. Herein, electrodeposition was used to produce Ni-based electrocatalysts supported on carbon fiber paper, followed by UV/O-3 treatment to oxidize and modify their surface chemistry. The resulting electrodes were composed of nanoclusters formed by a metallic nickel core and ultrathin sheets of a high-valence nickel oxide whose crystalline structure was similar to NiO2, with Ni2+/Ni3+ oxidation states. Upon investigating the effect of the electrochemical conditioning of these high-valence nickel oxide/nickel electrodes, confirming the formation of surface beta-Ni(OH)(2). This surface layer improved the performance of the electrode by providing active sites for H2O adsorption and dissociation, as indicated by detailed density functional theory (DFT) calculations. The origin of the higher HER activity of beta-Ni(OH)(2) (001) surface compared to NiO2 (2D), and Ni (111) surfaces is attributed to its unique electronic structure. The high valence nickel oxide/nickel electrodes possessed robust long-term OER and HER stability over 24h Finally, the potential for modifying the structural composition of these electrodes and their use as bifunctional electrocatalysts for the water-splitting reaction was demonstrated by using the resulting electrodes in an electrolyzer coupled with/without a photovoltaic cell.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Aerogel-derived nickel-iron oxide catalysts for oxygen evolution reaction in alkaline media
    Osmieri, Luigi
    Yu, Haoran
    Hermann, Raphael P.
    Kreider, Melissa E.
    Meyer, Harry M., III
    Kropf, A. Jeremy
    Park, Jae Hyung
    Alia, Shaun M.
    Cullen, David A.
    Myers, Deborah J.
    Zelenay, Piotr
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 348
  • [2] Hierarchical Multiporous Nickel for Oxygen Evolution Reaction in Alkaline Media
    Assavapanumat, Sunpet
    Ketkaew, Marisa
    Garrigue, Patrick
    Lapeyre, Veronique
    Reculusa, Stephane
    Wattanakit, Chularat
    Kuhn, Alexander
    CHEMCATCHEM, 2019, 11 (24) : 5951 - 5960
  • [3] Exploring the Influence of the Nickel Oxide Species on the Kinetics of Hydrogen Electrode Reactions in Alkaline Media
    Oshchepkov, Alexandr G.
    Bonnefont, Antoine
    Saveleva, Viktoriia A.
    Papaefthimiou, Vasiliki
    Zafeiratos, Spyridon
    Pronkin, Sergey N.
    Parmon, Valentin N.
    Savinova, Elena R.
    TOPICS IN CATALYSIS, 2016, 59 (15-16) : 1319 - 1331
  • [4] Alpha-Nickel Hydroxide Coating of Metallic Nickel for Enhanced Alkaline Hydrogen Evolution
    Xue, Song
    Liang, Yunchang
    Hou, Shujin
    Zhang, Yajing
    Jiang, Heqing
    CHEMSUSCHEM, 2022, 15 (18)
  • [5] Charge-counterbalance modulated amorphous nickel oxide for efficient alkaline hydrogen and oxygen evolution
    Guo, Wen
    Yang, Tao
    Zhang, Hongyan
    Zhou, Hao
    Wei, Wenxian
    Liang, Wenjie
    Zhou, Yilin
    Yu, Tingting
    Zhao, Hong
    CHEMICAL ENGINEERING JOURNAL, 2023, 470
  • [6] Facile fabrication of an enhanced electrodeposited nickel electrode for alkaline hydrogen evolution reaction
    Huang, Chunjuan
    Wang, Zhongwei
    Yao, Zhiyang
    Ma, Yanlong
    Guo, Fei
    Chai, Linjiang
    ELECTROCHIMICA ACTA, 2024, 477
  • [7] Importance of Nickel Oxide Lattice Defects for Efficient Oxygen Evolution Reaction
    Radinger, Hannes
    Connor, Paula
    Tengeler, Sven
    Stark, Robert W.
    Jaegermann, Wolfram
    Kaiser, Bernhard
    CHEMISTRY OF MATERIALS, 2021, 33 (21) : 8259 - 8266
  • [8] Nickel nanoparticles coated on the exfoliated graphene layer as an efficient and stable catalyst for oxygen reduction and hydrogen evolution in alkaline media
    Kakaei, Karim
    Ostadi, Zahra
    MATERIALS RESEARCH EXPRESS, 2020, 7 (05)
  • [9] Efficient Hydrogen and Oxygen Evolution Catalysis Using 3D-Structured Nickel Phosphosulfide Nanosheets in Alkaline Media
    Lin, Lei
    Fu, Qiang
    Hu, Junbei
    Wang, Ran
    Wang, Xianjie
    MOLECULES, 2023, 28 (01):
  • [10] Self-supported nickel sulfide derived from nickel foam for hydrogen evolution and oxygen evolution reaction: effect of crystal phase switching
    Yang, Wenshu
    Wang, Shuaishuai
    Luo, Wei
    Li, Longhua
    Hao, Jinhui
    Shi, Weidong
    NANOTECHNOLOGY, 2021, 32 (08)