Analytic Theory of Legendre-Type Transformations for a Frobenius Manifold

被引:0
作者
Yang, Di [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
GROMOV-WITTEN INVARIANTS; TOPOLOGICAL FIELD-THEORY; AFFINE WEYL GROUPS; QUANTUM COHOMOLOGY; INTEGRABLE HIERARCHIES; HYDRODYNAMIC TYPE; ORBIT SPACE; DIFFERENTIAL-EQUATIONS; HAMILTONIAN STRUCTURES; STOKES MATRICES;
D O I
10.1007/s00220-024-05106-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let M be an n-dimensional Frobenius manifold. Fix kappa is an element of{1,& ctdot;,n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa \in \{1,\dots ,n\}$$\end{document}. Assuming certain invertibility, Dubrovin introduced the Legendre-type transformation S kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_\kappa $$\end{document}, which transforms M to an n-dimensional Frobenius manifold S kappa(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_\kappa (M)$$\end{document}. In this paper, we show that these S kappa(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_\kappa (M)$$\end{document} share the same monodromy data at the Fuchsian singular point of the Dubrovin connection, and that for the case when M is semisimple they also share the same Stokes matrix and the same central connection matrix. A straightforward application of the monodromy identification is the following: if we know the monodromy data of some semisimple Frobenius manifold M, we immediately obtain those of its Legendre-type transformations. Another application gives the identification between the kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}th partition function of a semisimple Frobenius manifold M and the topological partition function of S kappa(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\kappa }(M)$$\end{document}.
引用
收藏
页数:50
相关论文
共 107 条
[1]   The differential geometry of the orbit space of extended affine Jacobi group An [J].
Almeida, Guilherme F. .
JOURNAL OF GEOMETRY AND PHYSICS, 2022, 171
[2]   The Differential Geometry of the Orbit Space of Extended Affine Jacobi Group A1 [J].
Almeida, Guilherme F. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2021, 17
[3]   Topological Landau-Ginzburg theory with a rational potential and the dispersionless KP hierarchy [J].
Aoyama, S ;
Kodama, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 182 (01) :185-219
[4]  
Arnold V. I., 1988, Monographs in Mathematics, V83
[5]  
Arnold V. I., 1975, Russ. Math. Surv, V30, P1, DOI [10.1070/RM1975v030n05ABEH001521, DOI 10.1070/RM1975V030N05ABEH001521]
[6]   ON THE REDUCTION OF CONNECTION PROBLEMS FOR DIFFERENTIAL-EQUATIONS WITH AN IRREGULAR SINGULAR POINT TO ONES WITH ONLY REGULAR SINGULARITIES .1. [J].
BALSER, W ;
JURKAT, WB ;
LUTZ, DA .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1981, 12 (05) :691-721
[7]   BIRKHOFF INVARIANTS AND STOKES MULTIPLIERS FOR MEROMORPHIC LINEAR-DIFFERENTIAL EQUATIONS [J].
BALSER, W ;
JURKAT, WB ;
LUTZ, DA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 71 (01) :48-94
[8]   The intrinsic normal cone [J].
Behrend, K ;
Fantechi, B .
INVENTIONES MATHEMATICAE, 1997, 128 (01) :45-88
[9]   Frobenius manifold structure on orbit space of Jacobi groups; Part II [J].
Bertola, M .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2000, 13 (03) :213-233
[10]   Frobenius manifold structure on orbit space of Jacobi groups; Part I [J].
Bertola, M .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2000, 13 (01) :19-41