Global Dynamics and Optimal Control of a Fractional-Order SIV Epidemic Model with Nonmonotonic Occurrence Rate

被引:1
作者
Yan, Juhui [1 ]
Wu, Wanqin [1 ]
Miao, Qing [1 ]
Tan, Xuewen [1 ]
机构
[1] Yunnan Minzu Univ, Sch Math & Comp Sci, Yuehua St 2929, Kunming 650500, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional-order SIV model; fractional optimal control; global stability; nonmonotonic occurrence rate; BACKWARD BIFURCATION; STABILITY; VACCINATION; EQUILIBRIA; VACCINES;
D O I
10.3390/math12172735
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper performs a detailed analysis and explores optimal control strategies for a fractional-order SIV epidemic model, incorporating a nonmonotonic incidence rate. In this paper, the population of vaccinated individuals is included in the disease dynamics model. After proving the non-negative boundedness of the fractional-order SIV model, we focus on analyzing the equilibrium point characteristics of the model, delving into its existence, uniqueness, and stability analysis. In addition, our research includes formulating optimal control strategies specifically aimed at minimizing the number of infections while keeping costs as low as possible. To validate the theoretical findings and uncover the practical efficacy and prospects of control measures in mitigating epidemic spread, numerical simulations are performed.
引用
收藏
页数:21
相关论文
共 50 条
[31]   Optimal control and bifurcation analysis of a delayed fractional-order epidemic model for the COVID-19 pandemic [J].
Xu, Conghui ;
Yu, Yongguang ;
Ren, Guojian ;
Si, Xinhui .
INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024,
[32]   HIV/AIDS epidemic fractional-order model [J].
Zafar, Zain Ul Abadin ;
Rehan, Kashif ;
Mushtaq, M. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (07) :1298-1315
[33]   Fractional-Order Epidemic Model for Measles Infection [J].
Akuka, Philip N. A. ;
Seidu, Baba ;
Okyere, Eric ;
Abagna, Stephen .
SCIENTIFICA, 2024, 2024
[34]   A fractional-order epidemic model with time-delay and nonlinear incidence rate [J].
Rihan, F. A. ;
Al-Mdallal, Q. M. ;
AlSakaji, H. J. ;
Hashish, A. .
CHAOS SOLITONS & FRACTALS, 2019, 126 (97-105) :97-105
[35]   THE GLOBAL DYNAMICS AND OPTIMAL CONTROL OF A PLANT EPIDEMIC MODEL [J].
Zhang, Hong ;
Su, Mingming ;
Georgescu, Paul .
COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2015,
[36]   Impact of media coverage on a fractional-order SIR epidemic model [J].
Maji, Chandan .
INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2022, 13 (05)
[37]   GLOBAL STABILITY OF A FRACTIONAL ORDER SIR EPIDEMIC MODEL WITH DOUBLE EPIDEMIC HYPOTHESIS AND NONLINEAR INCIDENCE RATE [J].
Naim, Mouhcine ;
Lahmidi, Fouad ;
Namir, Abdelwahed .
COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2020, :1-15
[38]   Optimal control of glucose-insulin dynamics via delay differential model with fractional-order [J].
Rihan, Fathalla A. ;
Udhayakumar, K. .
ALEXANDRIA ENGINEERING JOURNAL, 2025, 114 :243-255
[39]   Nonlinear dynamics and optimal control strategies of a novel fractional-order lumpy skin disease model [J].
El-Mesady, A. ;
Elsadany, A. A. ;
Mahdy, A. M. S. ;
Elsonbaty, Amr .
JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 79
[40]   Optimal control and bifurcation analysis of a delayed fractional-order SIRS model with general incidence rate and delayed control [J].
Xu, Conghui ;
Yu, Yongguang ;
Ren, Guojian ;
Si, Xinhui .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2024, 29 (05) :890-913