Cahn-Hilliard system;
Fractional integrodifferential operators;
Nonlocal regional operators;
Fractional Neumann boundary conditions;
Existence and uniqueness;
EQUATION;
EIGENVALUES;
ORDER;
SETS;
D O I:
10.1016/j.na.2024.113623
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We introduce a fractional variant of the Cahn-Hilliard equation settled in a bounded domain and with a possibly singular potential. We first focus on the case of homogeneous Dirichlet boundary conditions, and show how to prove the existence and uniqueness of a weak solution. The proof relies on the variational method known as minimizing movements scheme, , which fits naturally with the gradient-flow structure of the equation. The interest of the proposed method lies in its extreme generality and flexibility. In particular, relying on the variational structure of the equation, we prove the existence of a solution for a general class of integrodifferential operators, not necessarily linear or symmetric, which include fractional versions of the q-Laplacian. In the second part of the paper, we adapt the argument in order to prove the existence of solutions in the case of regional fractional operators. As a byproduct, this yields an existence result in the interesting cases of homogeneous fractional Neumann boundary conditions or periodic boundary conditions.
机构:
Univ Milan, Dipartimento Matemat F Enriques, Via C Saldini 50, I-20133 Milan, Italy
CNR, Ist Matemat Appl & Tecnol Informat Enrico Magenes, Via Ferrata 1, I-27100 Pavia, ItalyUniv Milan, Dipartimento Matemat F Enriques, Via C Saldini 50, I-20133 Milan, Italy
Cavaterra, Cecilia
Frigeri, Sergio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milan, Dipartimento Matemat F Enriques, Via C Saldini 50, I-20133 Milan, ItalyUniv Milan, Dipartimento Matemat F Enriques, Via C Saldini 50, I-20133 Milan, Italy
Frigeri, Sergio
Grasselli, Maurizio
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, ItalyUniv Milan, Dipartimento Matemat F Enriques, Via C Saldini 50, I-20133 Milan, Italy
机构:
Univ Cattolica Sacro Cuore Brescia, Dipartimento Matemat N Tartaglia, Via Musei 41, I-25121 Brescia, ItalyUniv Cattolica Sacro Cuore Brescia, Dipartimento Matemat N Tartaglia, Via Musei 41, I-25121 Brescia, Italy
Frigeri, Sergio
Grasselli, Maurizio
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, ItalyUniv Cattolica Sacro Cuore Brescia, Dipartimento Matemat N Tartaglia, Via Musei 41, I-25121 Brescia, Italy
Grasselli, Maurizio
Sprekels, Jurgen
论文数: 0引用数: 0
h-index: 0
机构:
Weierstrass Inst Appl Anal & Stochast, Mohrenstr 39, D-10117 Berlin, Germany
Humboldt Univ, Dept Math, Unter Linden 6, D-10099 Berlin, GermanyUniv Cattolica Sacro Cuore Brescia, Dipartimento Matemat N Tartaglia, Via Musei 41, I-25121 Brescia, Italy