Machine learning models based on fluid immunoproteins that predict non-AIDS adverse events in people with HIV

被引:2
作者
Premeaux, Thomas A. [1 ]
Bowler, Scott [1 ]
Friday, Courtney M. [1 ]
Moser, Carlee B. [2 ]
Hoenigl, Martin [3 ,4 ]
Lederman, Michael M. [5 ]
Landay, Alan L. [6 ]
Gianella, Sara
Ndhlovu, Lishomwa C. [1 ]
机构
[1] Weill Cornell Med, Dept Med, Div Infect Dis, New York, NY 10065 USA
[2] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Ctr Biostat AIDS Res, Boston, MA USA
[3] Univ Calif San Diego, Dept Med, Div Infect Dis, San Diego, CA USA
[4] Med Univ Graz, Dept Internal Med, Div Infect Dis, Graz, Austria
[5] Case Western Reserve Univ, Dept Med, Div Infect Dis & HIV Med, Cleveland, OH USA
[6] Rush Univ, Med Ctr, Dept Internal Med, Chicago, IL USA
基金
美国国家卫生研究院;
关键词
non-AIDS event; Support vector; AGE-RELATED-CHANGES; ANTIRETROVIRAL THERAPY; CELL BIOLOGY; RISK; INFLAMMATION; INITIATION; COMORBIDITIES; INFECTION; HEALTH; CANCER;
D O I
10.1016/j.isci.2024.109945
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite the success of antiretroviral therapy (ART), individuals with HIV remain at risk for experiencing non-AIDS adverse events (NAEs), including cardiovascular complications and malignancy. Several surrogate immune biomarkers in blood have shown predictive value in predicting NAEs; however, composite panels generated using machine learning may provide a more accurate advancement for monitoring and discriminating NAEs. In a nested case-control study, we aimed to develop machine learning models to discriminate cases (experienced an event) and matched controls using demographic and clinical characteristics alongside 49 plasma immunoproteins measured prior to and post-ART initiation. We generated support vector machine (SVM) classifier models for high-accuracy discrimination of individuals aged 30-50 years who experienced non-fatal NAEs at pre-ART and one-year post-ART. Extreme gradient boosting generated a high-accuracy model at pre-ART, while K-nearest neighbors performed poorly all around. SVM modeling may offer guidance to improve disease monitoring and elucidate potential therapeutic interventions.
引用
收藏
页数:16
相关论文
共 65 条
  • [21] Gut Epithelial Barrier Dysfunction and Innate Immune Activation Predict Mortality in Treated HIV Infection
    Hunt, Peter W.
    Sinclair, Elizabeth
    Rodriguez, Benigno
    Shive, Carey
    Clagett, Brian
    Funderburg, Nicholas
    Robinson, Janet
    Huang, Yong
    Epling, Lorrie
    Martin, Jeffrey N.
    Deeks, Steven G.
    Meinert, Curtis L.
    Van Natta, Mark L.
    Jabs, Douglas A.
    Lederman, Michael M.
    [J]. JOURNAL OF INFECTIOUS DISEASES, 2014, 210 (08) : 1228 - 1238
  • [22] Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future
    Iqbal, Muhammad Javed
    Javed, Zeeshan
    Sadia, Haleema
    Qureshi, Ijaz A.
    Irshad, Asma
    Ahmed, Rais
    Malik, Kausar
    Raza, Shahid
    Abbas, Asif
    Pezzani, Raffaele
    Sharifi-Rad, Javad
    [J]. CANCER CELL INTERNATIONAL, 2021, 21 (01)
  • [23] Joseph Julie, 2023, J Extracell Biol, V2, DOI 10.1002/jex2.102
  • [24] Kanekar Amar, 2010, J Clin Med Res, V2, P55, DOI 10.4021/jocmr2010.03.255w
  • [25] Network-based machine learning approach to predict immunotherapy response in cancer patients
    Kong, JungHo
    Ha, Doyeon
    Lee, Juhun
    Kim, Inhae
    Park, Minhyuk
    Im, Sin-Hyeog
    Shin, Kunyoo
    Kim, Sanguk
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [26] Storm of soluble immune checkpoints associated with disease severity of COVID-19
    Kong, Yaxian
    Wang, Yu
    Wu, Xueying
    Han, Junyan
    Li, Guoli
    Hua, Mingxi
    Han, Kai
    Zhang, Henghui
    Li, Ang
    Zeng, Hui
    [J]. SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2020, 5 (01)
  • [27] Machine learning applications in cancer prognosis and prediction
    Kourou, Konstantina
    Exarchos, Themis P.
    Exarchos, Konstantinos P.
    Karamouzis, Michalis V.
    Fotiadis, Dimitrios I.
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2015, 13 : 8 - 17
  • [28] Incidence of Non-AIDS-Defining Cancer in Antiretroviral Treatment-Naive Subjects after Antiretroviral Treatment Initiation: An ACTG Longitudinal Linked Randomized Trials Analysis
    Krishnan, Supriya
    Schouten, Jeffrey T.
    Jacobson, Denise L.
    Benson, Constance A.
    Collier, Ann C.
    Koletar, Susan L.
    Santana, Jorge
    Sattler, Fred R.
    Mitsuyasu, Ronald
    [J]. ONCOLOGY, 2011, 80 (1-2) : 42 - 49
  • [29] Machine learning prediction in cardiovascular diseases: a meta-analysis
    Krittanawong, Chayakrit
    Virk, Hafeez Ul Hassan
    Bangalore, Sripal
    Wang, Zhen
    Johnson, Kipp W.
    Pinotti, Rachel
    Zhang, HongJu
    Kaplin, Scott
    Narasimhan, Bharat
    Kitai, Takeshi
    Baber, Usman
    Halperin, Jonathan L.
    Tang, W. H. Wilson
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [30] Mucosal-homing natural killer cells are associated with aging in persons living with HIV
    Kroll, Kyle W.
    Shah, Spandan, V
    Lucar, Olivier A.
    Premeaux, Thomas A.
    Shikuma, Cecilia M.
    Corley, Michael J.
    Mosher, Matthew
    Woolley, Griffin
    Bowler, Scott
    Ndhlovu, Lishomwa C.
    Reeves, R. Keith
    [J]. CELL REPORTS MEDICINE, 2022, 3 (10)