Noise-robust analysis of X-Ray absorption near-edge structure based on poisson distribution

被引:0
作者
Kashiwamura, Shuhei [1 ]
Katakami, Shun [2 ]
Yamasaki, Taiga [3 ]
Iwamitsu, Kazunori [4 ]
Kumazoe, Hiroyuki [5 ]
Nagata, Kenji [6 ]
Okajima, Toshihiro [7 ]
Akai, Ichiro [8 ]
Okada, Masato [2 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Bunkyo, Tokyo, Japan
[2] Univ Tokyo, Grad Sch Frontier Sci, Kashiwa, Chiba 2778561, Japan
[3] Kumamoto Univ, Grad Sch Sci & Technol, Kumamoto, Japan
[4] Nara Inst Sci & Technol, Grad Sch Adv Sci & Technol, Ikoma, Japan
[5] Hitotsubashi Univ, Grad Sch Social Data Sci, Kunitachi, Tokyo, Japan
[6] Natl Inst Mat Sci, Ctr Basic Res Mat, Tsukuba, Ibaraki, Japan
[7] Aichi Synchrotron Radiat Ctr, Seto, Japan
[8] Kumamoto Univ, Inst Ind Nanomat, Kumamoto, Japan
来源
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS-METHODS | 2024年 / 4卷 / 01期
基金
日本学术振兴会;
关键词
Bayesian statistics; XANES; poisson distribution; exchange Monte Carlo method; solid electrolyte; MONTE-CARLO METHOD; SPECTROSCOPY; SELECTION;
D O I
10.1080/27660400.2024.2397939
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We demonstrate that the noise tolerance of X-ray absorption near-edge structure (XANES) analysis can be improved by reconsidering the noise model. XANES measurement is a powerful technique to investigate the structure and electronic state of materials. In XANES measurements, the incident photon number and the absorbed photon number are measured, and the ratio of the two (called the absorption factor) is analyzed. The conventional analytical method involves fitting by the least-squares method, in which the stochastic noise is assumed to conform to a Gaussian distribution. We propose a framework for XANES analysis using a Poisson distribution as a likelihood model, focusing on the number of absorbed photons rather than the absorption factor. We validate the effectiveness of our method in numerical experiments. Moreover, we apply our method to actual solid electrolyte material data and demonstrate its practicality.
引用
收藏
页数:16
相关论文
共 44 条
  • [1] First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole
    Akiyama, Kazunori
    Alberdi, Antxon
    Alef, Walter
    Asada, Keiichi
    Azulay, Rebecca
    Baczko, Anne-Kathrin
    Ball, David
    Balokovic, Mislav
    Barrett, John
    Bintley, Dan
    Blackburn, Lindy
    Boland, Wilfred
    Bouman, Katherine L.
    Bower, Geoffrey C.
    Bremer, Michael
    Brinkerink, Christiaan D.
    Brissenden, Roger
    Britzen, Silke
    Broderick, Avery E.
    Broguiere, Dominique
    Bronzwaer, Thomas
    Byun, Do-Young
    Carlstrom, John E.
    Chael, Andrew
    Chan, Chi-Kwan
    Chatterjee, Shami
    Chatterjee, Koushik
    Chen, Ming-Tang
    Chen, Yongjun
    Cho, Ilje
    Christian, Pierre
    Conway, John E.
    Cordes, James M.
    Crew, Geoffrey B.
    Cui, Yuzhu
    Davelaar, Jordy
    De Laurentis, Mariafelicia
    Deane, Roger
    Dempsey, Jessica
    Desvignes, Gregory
    Dexter, Jason
    Doeleman, Sheperd S.
    Eatough, Ralph P.
    Falcke, Heino
    Fish, Vincent L.
    Fomalont, Ed
    Fraga-Encinas, Raquel
    Friberg, Per
    Fromm, Christian M.
    Gomez, Jose L.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2019, 875 (01)
  • [2] Bayesian parameter estimation for biochemical reaction networks using region-based adaptive parallel tempering
    Ballnus, Benjamin
    Schaper, Steffen
    Theis, Fabian J.
    Hasenauer, Jan
    [J]. BIOINFORMATICS, 2018, 34 (13) : 494 - 501
  • [4] Bishop C., 2006, Pattern Recognition and Machine Learning, V2, P5
  • [5] de Groot F, 2008, ADV CONDENS MAT SCI, V6, P1
  • [6] Model Selection Techniques An overview
    Ding, Jie
    Tarokh, Vahid
    Yang, Yuhong
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (06) : 16 - 34
  • [7] Parallel tempering: Theory, applications, and new perspectives
    Earl, DJ
    Deem, MW
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2005, 7 (23) : 3910 - 3916
  • [8] Adaptive optimal scaling of Metropolis-Hastings algorithms using the Robbins-Monro process
    Garthwaite, P. H.
    Fan, Y.
    Sisson, S. A.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (17) : 5098 - 5111
  • [9] Geyer Charles J., 1992, Statistical Science, V7, P473, DOI [DOI 10.1214/SS/1177011137, 10.1214/ss/1177011145]
  • [10] Bayesian Inference for Small-Angle Scattering Data
    Hayashi, Yui
    Katakami, Shun
    Kuwamoto, Shigeo
    Nagata, Kenji
    Mizumaki, Masaichiro
    Okada, Masato
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2023, 92 (09)