Investigation of superparamagnetic iron oxide nanoparticles in air environment for elevated saturation magnetization

被引:1
|
作者
Karaagac, Oznur [1 ]
Kockar, Hakan [1 ]
机构
[1] Balikesir Univ, Sci & Literature Fac, Phys Dept, TR-10145 Cagis, Balikesir, Turkiye
关键词
superparamagnetism; Co-precipitation; iron oxide nanoparticles; air atmosphere; structural and magnetic properties; MAGNETITE NANOPARTICLES; FE3O4; NANOPARTICLES; PARTICLE-SIZE; SURFACE; FUNCTIONALIZATION; MICROPARTICLES; STABILIZATION; MICROEMULSION; SALT;
D O I
10.1088/1402-4896/ad60fa
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Iron oxide nanoparticles have garnered interest for their unique properties and wide application areas. For applications, superparamagnetic nanoparticles are required so that they can be magnetized by an external magnetic field and rapidly demagnetize again when the field is removed. High saturation magnetization, Ms is also required for applications to provide easy magnetic control over separation and targeting. For magnetically controlled applications, superparamagnetic iron oxide nanoparticles with a high Ms are important. In this study, superparamagnetic iron oxide nanoparticles were co-precipitated under air atmosphere and the effects of alkali concentration, stirring rate and reaction time on the structural and related magnetic properties were investigated to obtain the high Ms for each parameter. According to the structural results, it is challenging to obtain magnetite nanoparticles under air atmosphere due to oxidizing effect. The increase of Ms values with the increase of alkali concentration may come from the phase of the samples although the crystal size of the nanoparticles is getting smaller. It can be said that there is an optimum stirring rate to obtain the highest Ms under air atmosphere rather than an uptrend/downtrend. The maximum Ms of 69.2 emu g-1 was obtained for superparamagnetic iron oxide nanoparticles synthesized at 700 rpm. With the increase of reaction time, magnetic size of the nanoparticles is observed to decrease in contrast with the increase of physical particle size. The maximum Ms value for the reaction time parameter is 67.3 emu g-1 at 15 min. Due to their high Ms values and superparamagnetic nature, the nanoparticles synthesized under study may find use in magnetic separation, water purification, and other related fields.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Optimum Saturation Magnetization of Superparamagnetic Iron Oxide Nanoparticles for Versatile Applications
    Karaagac, O.
    Hasirci, C.
    Kockar, H.
    ACTA PHYSICA POLONICA A, 2024, 146 (02) : 154 - 164
  • [2] Improvement of the saturation magnetization of PEG coated superparamagnetic iron oxide nanoparticles
    Karaagac, Oznur
    Kockar, Hakan
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2022, 551
  • [3] A simple way to obtain high saturation magnetization for superparamagnetic iron oxide nanoparticles synthesized in air atmosphere: Optimization by experimental design
    Karaagac, Oznur
    Kockar, Hakan
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 409 : 116 - 123
  • [4] The influence of synthesis parameters on one-step synthesized superparamagnetic cobalt ferrite nanoparticles with high saturation magnetization
    Karaagac, Oznur
    Yildiz, Busra Bilir
    Kockar, Hakan
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 473 : 262 - 267
  • [5] Nitric oxide donor superparamagnetic iron oxide nanoparticles
    Molina, Miguel M.
    Seabra, Amedea B.
    de Oliveira, Marcelo G.
    Itri, Rosangela
    Haddad, Paula S.
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2013, 33 (02): : 746 - 751
  • [6] Effect of Synthesis Parameters on the Properties of Superparamagnetic Iron Oxide Nanoparticles
    Karaagac, Oznur
    Kockar, Hakan
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2012, 25 (08) : 2777 - 2781
  • [7] Iron-Oxide Nanoparticles with High Saturation Magnetization and Estimating Their Mean Magnetic Size Using Magnetization Curve
    Eivari, Hossein Asnaashari
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2024, 43 (07): : 2546 - 2555
  • [8] Particle size determination from magnetization curves in reduced graphene oxide decorated with monodispersed superparamagnetic iron oxide nanoparticles
    Bertran, Arnau
    Sandoval, Stefania
    Oro-Sole, Judith
    Sanchez, Alvar
    Tobias, Gerard
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 566 : 107 - 119
  • [9] Hydrodynamics of Superparamagnetic Iron Oxide Nanoparticles
    Vikram, S.
    Vasanthakumari, R.
    Tsuzuki, Takuya
    Rangarajan, Murali
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (09) : 10524 - 10528
  • [10] Thermal Plasma Synthesis of Superparamagnetic Iron Oxide Nanoparticles
    Lei, Pingyan
    Boies, Adam M.
    Calder, Steven
    Girshick, Steven L.
    PLASMA CHEMISTRY AND PLASMA PROCESSING, 2012, 32 (03) : 519 - 531