A Note on a Well-Defined Sectional Curvature of a Semi-Symmetric Non-Metric Connection

被引:5
作者
Mihai, Adela [1 ,2 ]
Mihai, Ion [3 ]
机构
[1] Tech Univ Civil Engn Bucharest, Dept Math & Comp Sci, Bucharest 020396, Romania
[2] Transilvania Univ Brasov, Interdisciplinary Doctoral Sch, Brasov 500036, Romania
[3] Univ Bucharest, Dept Math, Bucharest 010014, Romania
来源
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY | 2024年 / 17卷 / 01期
关键词
linear connection; semi-symmetric connection; metric connection; non-metric connection; sectional curvature; SUBMANIFOLDS;
D O I
10.36890/iejg.1440523
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we propose a new sectional curvature on a Riemannian manifold endowed with a semisymmetric non -metric connection. A Chen -Ricci inequality is proven. Some possible applications in other fields are mentioned.
引用
收藏
页码:15 / 23
页数:9
相关论文
共 13 条
[1]  
AGASHE NS, 1992, INDIAN J PURE AP MAT, V23, P399
[2]  
Agashe NS., 1994, Tensor, V55, P120
[3]   Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions [J].
Chen, BY .
GLASGOW MATHEMATICAL JOURNAL, 1999, 41 :33-41
[4]   Characterizing the E⊗e Jahn-Teller Potential Energy Surfaces by Differential Geometry Tools [J].
Cimpoesu, Fanica ;
Mihai, Adela .
SYMMETRY-BASEL, 2022, 14 (03)
[5]   On the geometry of partly symmetrical transferences [J].
Friedmann, A ;
Schouten, JA .
MATHEMATISCHE ZEITSCHRIFT, 1924, 21 :211-223
[6]  
Hayden HA, 1932, P LOND MATH SOC, V34, P27
[7]  
IMAI T, 1972, TENSOR, V24, P293
[8]   A NOTE ON DERIVED CONNECTIONS FROM SEMI-SYMMETRIC METRIC CONNECTIONS [J].
Mihai, Adela .
MATHEMATICA SLOVACA, 2017, 67 (01) :221-226
[9]   SUBMANIFOLDS OF A RIEMANNIAN MANIFOLD WITH SEMISYMMETRIC METRIC CONNECTIONS [J].
NAKAO, Z .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 54 (JAN) :261-266
[10]   A sectional curvature for statistical structures [J].
Opozda, Barbara .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 497 :134-161