Multi-Objective Lagged Feature Selection Based on Dependence Coefficient for Time-Series Forecasting

被引:0
|
作者
Lourdes Linares-Barrera, Maria [1 ]
Jimenez Navarro, Manuel J. [1 ]
Riquelme, Jose C. [1 ]
Martinez-Ballesteros, Maria [1 ]
机构
[1] Univ Seville, Dept Comp Languages & Syst, Seville 41012, Spain
来源
ADVANCES IN ARTIFICIAL INTELLIGENCE, CAEPIA 2024 | 2024年
关键词
Feature Selection; Multi-objective Optimization; Genetic Algorithm; Neural Network; Time-Series Forecasting;
D O I
10.1007/978-3-031-62799-6_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the fast-evolving field of machine learning, the process of feature selection is essential for reducing model complexity and enhancing interpretability. Within this context, filter methods have gained recognition for their effectiveness in assessing features through statistical metrics. A recently introduced metric, the Conditional Dependence Coefficient, aims to assess the dependence between subsets of features and a target variable, enhancing our understanding of feature relevance. This paper presents a novel feature selection approach that integrates this statistical metric with a multi-objective evolutionary algorithm. This strategy leverages the flexibility of evolutionary algorithms to efficiently explore the feature space and employs an intuitive metric for identifying pertinent features. Unlike many filter-based approaches, our method does not require thresholds or percentiles related to the number of selected features and evaluates the collective merit of feature subsets instead of the significance of individual features. To address the forecasting challenge of identifying the appropriate time lags and features, we performed experiments on eight distinct datasets containing multivariate time-series data. Comparing our method against a baseline with no feature selection, our results show solid performance in efficacy and a notable reduction in model complexity.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 50 条
  • [41] Optimizing multi-objective PSO based feature selection method using a feature elitism mechanism
    Amoozegar, Maryam
    Minaei-Bidgoli, Behrouz
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 113 : 499 - 514
  • [42] Feature selection with annealing for forecasting financial time series
    Pabuccu, Hakan
    Barbu, Adrian
    FINANCIAL INNOVATION, 2024, 10 (01)
  • [43] Feature Selection in Cancer Microarray Data using Multi-Objective Genetic Algorithm combined with Correlation Coefficient
    Hasnat, Abul
    Molla, Azhar Uddin
    IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGICAL TRENDS IN COMPUTING, COMMUNICATIONS AND ELECTRICAL ENGINEERING (ICETT), 2016,
  • [44] Global mutual information-based feature selection approach using single-objective and multi-objective optimization
    Han, Min
    Ren, Weijie
    NEUROCOMPUTING, 2015, 168 : 47 - 54
  • [45] A Multi-objective hybrid filter-wrapper evolutionary approach for feature selection
    Hammami, Marwa
    Bechikh, Slim
    Hung, Chih-Cheng
    Ben Said, Lamjed
    MEMETIC COMPUTING, 2019, 11 (02) : 193 - 208
  • [46] An evolutionary decomposition-based multi-objective feature selection for multi-label classification
    Bidgoli, Azam Asilian
    Ebrahimpour-Komleh, Hossein
    Rahnamayan, Shahryar
    PEERJ COMPUTER SCIENCE, 2020, 2020 (03) : 1 - 32
  • [47] A multi-objective approach for profit-driven feature selection in credit scoring
    Kozodoi, Nikita
    Lessmann, Stefan
    Papakonstantinou, Konstantinos
    Gatsoulis, Yiannis
    Baesens, Bart
    DECISION SUPPORT SYSTEMS, 2019, 120 : 106 - 117
  • [48] Multi-objective feature selection based on artificial bee colony: An acceleration approach with variable sample size
    Wang Xiao-han
    Zhang Yong
    Sun Xiao-yan
    Wang Yong-li
    Du Chang-he
    APPLIED SOFT COMPUTING, 2020, 88
  • [49] An optimal SVM with feature selection using multi-objective PSO
    Behravan, Iman
    Zahiri, Seyed Hamid
    Dehghantanha, Oveis
    2016 1ST CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC 2016), 2016, : 76 - 81
  • [50] Approaches to Multi-Objective Feature Selection: A Systematic Literature Review
    Al-Tashi, Qasem
    Abdulkadir, Said Jadid
    Rais, Helmi Md
    Mirjalili, Seyedali
    Alhussian, Hitham
    IEEE ACCESS, 2020, 8 : 125076 - 125096