Multiplexed quantum state transfer in waveguides

被引:1
作者
Penas, Guillermo F. [1 ]
Puebla, Ricardo [2 ]
Garcia-Ripoll, Juan Jose [1 ]
机构
[1] CSIC, Inst Fis Fundamental, IFF, Calle Serrano 113b, Madrid 28006, Spain
[2] Univ Carlos III Madrid, Dept Fis, Avda Univ 30, Leganes 28911, Spain
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 03期
关键词
COMMUNICATION; COMPUTATION; FIDELITY;
D O I
10.1103/PhysRevResearch.6.033294
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, we consider a realistic waveguide implementation of a quantum network that serves as a testbed to show how to maximize the storage and manipulation of quantum information in QED setups. We analyze two approaches using wavepacket engineering and quantum state transfer protocols. First, we propose and design a family of orthogonal photons in the time domain. These photons allow for a selective interaction with distinct targeted qubits. Yet, mode multiplexing employing resonant nodes is largely spoiled by cross-talk effects. This motivates the second approach, namely, frequency multiplexing. Here we explore the limits of frequency multiplexing through the waveguide, analyzing its capabilities to host and faithfully transmit photons of different frequencies within a given bandwidth. We perform detailed one- and two-photon simulations and provide theoretical bounds for the fidelity of coherent quantum state transfer protocols under realistic conditions. Our results show that state-of-the-art experiments can employ dozens of multiplexed photons with global fidelities fulfilling the requirements imposed by fault-tolerant quantum computing. This is with the caveat that the conditions for single-photon fidelity are met.
引用
收藏
页数:15
相关论文
共 49 条
[1]   Programmable multimode quantum networks [J].
Armstrong, Seiji ;
Morizur, Jean-Francois ;
Janousek, Jiri ;
Hage, Boris ;
Treps, Nicolas ;
Lam, Ping Koy ;
Bachor, Hans-A. .
NATURE COMMUNICATIONS, 2012, 3
[2]   On-demand quantum state transfer and entanglement between remote microwave cavity memories [J].
Axline, Christopher J. ;
Burkhart, Luke D. ;
Pfaff, Wolfgang ;
Zhang, Mengzhen ;
Chou, Kevin ;
Campagne-Ibarcq, Philippe ;
Reinhold, Philip ;
Frunzio, Luigi ;
Girvin, S. M. ;
Jiang, Liang ;
Devoret, M. H. ;
Schoelkopf, R. J. .
NATURE PHYSICS, 2018, 14 (07) :705-+
[3]   Efficient distributed quantum computing [J].
Beals, Robert ;
Brierley, Stephen ;
Gray, Oliver ;
Harrow, Aram W. ;
Kutin, Samuel ;
Linden, Noah ;
Shepherd, Dan ;
Stather, Mark .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2153)
[4]   Phonon-mediated quantum state transfer and remote qubit entanglement [J].
Bienfait, A. ;
Satzinger, K. J. ;
Zhong, Y. P. ;
Chang, H. -S. ;
Chou, M. -H. ;
Conner, C. R. ;
Dumur, E. ;
Grebel, J. ;
Peairs, G. A. ;
Povey, R. G. ;
Cleland, A. N. .
SCIENCE, 2019, 364 (6438) :368-+
[5]   Circuit quantum electrodynamics [J].
Blais, Alexandre ;
Grimsmo, Arne L. ;
Girvin, S. M. ;
Wallraffe, Andreas .
REVIEWS OF MODERN PHYSICS, 2021, 93 (02)
[6]   Quantum Internet: Networking Challenges in Distributed Quantum Computing [J].
Cacciapuoti, Angela Sara ;
Caleffi, Marcello ;
Tafuri, Francesco ;
Cataliotti, Francesco Saverio ;
Gherardini, Stefano ;
Bianchi, Giuseppe .
IEEE NETWORK, 2020, 34 (01) :137-143
[7]  
Caleffi M, 2022, Arxiv, DOI [arXiv:2212.10609, DOI 10.48550/ARXIV.2212.10609]
[8]   Deterministic Remote Entanglement of Superconducting Circuits through Microwave Two-Photon Transitions [J].
Campagne-Ibarcq, P. ;
Zalys-Geller, E. ;
Narla, A. ;
Shankar, S. ;
Reinhold, P. ;
Burkhart, L. ;
Axline, C. ;
Pfaff, W. ;
Frunzio, L. ;
Schoelkopf, R. J. ;
Devoret, M. H. .
PHYSICAL REVIEW LETTERS, 2018, 120 (20)
[9]   Quantum state transfer and entanglement distribution among distant nodes in a quantum network [J].
Cirac, JI ;
Zoller, P ;
Kimble, HJ ;
Mabuchi, H .
PHYSICAL REVIEW LETTERS, 1997, 78 (16) :3221-3224
[10]   Distributed quantum computation over noisy channels [J].
Cirac, JI ;
Ekert, AK ;
Huelga, SF ;
Macchiavello, C .
PHYSICAL REVIEW A, 1999, 59 (06) :4249-4254