A NOTE ON THE U-DUNFORD-PETTIS OPERATORS

被引:1
作者
Afkir, Farid [1 ]
Elbour, Aziz [1 ]
机构
[1] Moulay Ismail Univ Meknes, Fac Sci & Technol, Dept Math, POB 509, Errachidia 52000, Morocco
关键词
Dunford-Pettis operator; U-Dunford-Pettis operator; AM-compact operator; order continuous norm; Banach lattice;
D O I
10.2989/16073606.2024.2397564
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this note is to give a correct proof of the theorem that concerns the domination property of the class of U-Dunford-Pettis operators obtained by O. Aboutafail, K. El Fahri, J. H'Michane and L. Zraoula [On the class of U-Dunford-Pettis operators, Quaestiones Mathematicae 45(4) (2022), 655-666]. Also, we investigate necessary and sufficient conditions under which U-Dunford-Pettis operators between Banach lattices must be Dunford-Pettis.
引用
收藏
页码:429 / 436
页数:8
相关论文
共 7 条
[1]   On the Class of U-Dunford-Pettis Operators [J].
Aboutafail, Othman ;
El Fahri, Kamal ;
H'Michane, Jawad ;
Zraoula, Larbi .
QUAESTIONES MATHEMATICAE, 2022, 45 (04) :655-666
[2]  
Aliprantis C. D., 2006, POSITIVE OPERATORS
[3]   Positive almost Dunford-Pettis operators and their duality [J].
Aqzzouz, Belmesnaoui ;
Elbour, Aziz ;
Wickstead, Anthony W. .
POSITIVITY, 2011, 15 (02) :185-197
[4]   L-weakly and M-weakly compact operators [J].
Chen, ZL ;
Wickstead, AW .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1999, 10 (03) :321-336
[6]  
Wnuk W., 1999, Banach lattices with order continuous norms
[7]  
Zaanen A. C., 1997, Introduction to Operator Theory in Riesz Spaces