Self-Supervised Domain Adaptation for 6DoF Pose Estimation

被引:0
作者
Jin, Juseong [1 ]
Jeong, Eunju [2 ]
Cho, Joonmyun [2 ]
Kim, Young-Gon [3 ,4 ]
机构
[1] Seoul Natl Univ, Interdisciplinary Program Bioengn, Seoul 08826, South Korea
[2] Elect & Telecommun Res Inst, Ind & Energy Convergence Res Div, Daejeon 34129, South Korea
[3] Seoul Natl Univ, Coll Med, Dept Med, Seoul 03080, South Korea
[4] Seoul Natl Univ Hosp, Dept Transdisciplinary Med, Seoul 03080, South Korea
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Pose estimation; Feature extraction; Entropy; Training; Task analysis; Adaptation models; Computer vision; Self-supervised learning; pose estimation; domain adaptation; self-supervised learning;
D O I
10.1109/ACCESS.2024.3430227
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main challenge of pose estimation for six degrees of freedom (6DoF) is the lack of labeled data in real environment. In order to overcome this problem, many studies recently have trained deep learning models with synthetic data. However, a domain gap between real and synthetic environments exists, prompting various approaches to address this issue. In this work, we propose domain adaptation for self-supervised 6DoF pose estimation, which leverages the components and introduces an effective method to reduce domain discrepancy. First, we adopt a multi-level domain adaptation module, on image level and instance level, to learn domain-invariant features. Second, we used entropy-based alignment to minimize the entropy of representation embedding. Finally, we evaluate our approach on LineMOD and Occlusion-LineMOD datasets. Experiments show that our proposed method achieves higher performance compared to the prior methods and demonstrate effectiveness in domain shift scenarios on 6DoF pose estimation.
引用
收藏
页码:101528 / 101535
页数:8
相关论文
共 36 条
[1]  
Bukschat Y, 2020, Arxiv, DOI [arXiv:2011.04307, DOI 10.48550/ARXIV.2011.04307]
[2]   AutoDIAL: Automatic DomaIn Alignment Layers [J].
Carlucci, Fabio Maria ;
Porzi, Lorenzo ;
Caputo, Barbara ;
Ricci, Elisa ;
Bulo, Samuel Rota .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :5077-5085
[3]   Inducing metallicity in graphene nanoribbons via zero-mode superlattices [J].
Rizzo, Daniel J. ;
Veber, Gregory ;
Jiang, Jingwei ;
McCurdy, Ryan ;
Cao, Ting ;
Bronner, Christopher ;
Chen, Ting ;
Louie, Steven G. ;
Fischer, Felix R. ;
Crommie, Michael F. .
SCIENCE, 2020, 369 (6511) :1597-+
[4]   Domain Adaptive Faster R-CNN for Object Detection in the Wild [J].
Chen, Yuhua ;
Li, Wen ;
Sakaridis, Christos ;
Dai, Dengxin ;
Van Gool, Luc .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3339-3348
[5]   Self-Supervised Representation Learning: Introduction, advances, and challenges [J].
Ericsson, Linus ;
Gouk, Henry ;
Loy, Chen Change ;
Hospedales, Timothy M. .
IEEE SIGNAL PROCESSING MAGAZINE, 2022, 39 (03) :42-62
[6]   RANDOM SAMPLE CONSENSUS - A PARADIGM FOR MODEL-FITTING WITH APPLICATIONS TO IMAGE-ANALYSIS AND AUTOMATED CARTOGRAPHY [J].
FISCHLER, MA ;
BOLLES, RC .
COMMUNICATIONS OF THE ACM, 1981, 24 (06) :381-395
[7]  
Ganin Y, 2016, J MACH LEARN RES, V17
[8]  
Ganin Y, 2015, PR MACH LEARN RES, V37, P1180
[9]   PVN3D: A Deep Point-wise 3D Keypoints Voting Network for 6DoF Pose Estimation [J].
He, Yisheng ;
Sun, Wei ;
Huang, Haibin ;
Liu, Jianran ;
Fan, Haoqiang ;
Sun, Jian .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11629-11638
[10]  
Hinterstoisser S, 2011, IEEE I CONF COMP VIS, P858, DOI 10.1109/ICCV.2011.6126326