Power quality disturbance signal classification in microgrid based on kernel extreme learning machine

被引:2
作者
Jing, Guoxiu [1 ]
Wang, Dengke [2 ]
Xiao, Qi [3 ]
Shen, Qianxiang [1 ]
Huang, Bonan [1 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang, Peoples R China
[2] State Grid Luohe Power Supply Co, Luohe 462000, Peoples R China
[3] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
learning (artificial intelligence); power grids; SYSTEM;
D O I
10.1049/ell2.13312
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a kernel extreme learning machine (KELM) integrated with the improved whale optimization algorithm (IWOA) to address the power quality disturbance (PQD) issue in microgrids. First, an adaptive variational mode decomposition method is employed to extract PQD signals in microgrids. Then, the IWOA is utilized to optimize the penalty factor and kernel function parameters for the KELM classifier model, thereby enhancing the performance of the classifier. Furthermore, the test results indicate that the proposed IWOA-KELM achieves high classification accuracy and rapid convergence for complex PQD signals. This paper presents a kernel extreme learning machine integrated with the improved whale optimization algorithm to address power quality issues in microgrids resulting from distributed power access. In this work, the adaptive variational mode decomposition method is employed to decompose the complex disturbance signals in microgrids. image
引用
收藏
页数:5
相关论文
共 15 条
[1]   Feature Extraction and Power Quality Disturbances Classification Using Smart Meters Signals [J].
Borges, Fabbio A. S. ;
Fernandes, Ricardo A. S. ;
Silva, Ivan N. ;
Silva, Cintia B. S. .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2016, 12 (02) :824-833
[2]   Real-time active power dispatch of virtual power plant based on distributed model predictive control [J].
Feng, Shuai ;
Funding, Dongsheng Yang ;
Zhou, Bowen ;
Luo, Yanhong ;
Li, Guangdi .
ELECTRONICS LETTERS, 2022, 58 (23) :872-875
[3]   A Distributed Robust Economic Dispatch Strategy for Integrated Energy System Considering Cyber-Attacks [J].
Huang, Bonan ;
Li, Yushuai ;
Zhan, Fengnan ;
Sun, Qiuye ;
Zhang, Huaguang .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (02) :880-890
[4]   Extreme Learning Machine for Regression and Multiclass Classification [J].
Huang, Guang-Bin ;
Zhou, Hongming ;
Ding, Xiaojian ;
Zhang, Rui .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (02) :513-529
[5]   Distributed dynamic event-triggered control for resilience-oriented current sharing in microgrid [J].
Jing, Guoxiu ;
Liu, Junqi ;
Zhao, Tianyang ;
Huang, Bonan ;
Wang, Rui .
IET RENEWABLE POWER GENERATION, 2024, 18 (07) :1332-1345
[6]   Double-Mode Energy Management for Multi-Energy System via Distributed Dynamic Event-Triggered Newton-Raphson Algorithm [J].
Li, Yushuai ;
Gao, David Wenzhong ;
Gao, Wei ;
Zhang, Huaguang ;
Zhou, Jianguo .
IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (06) :5339-5356
[7]   A Distributed Double-Newton Descent Algorithm for Cooperative Energy Management of Multiple Energy Bodies in Energy Internet [J].
Li, Yushuai ;
Gao, David Wenzhong ;
Gao, Wei ;
Zhang, Huaguang ;
Zhou, Jianguo .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (09) :5993-6003
[8]   Real-Time Implementation of Optimized Power Quality Events Classifier [J].
Markovska, Marija ;
Taskovski, Dimitar ;
Kokolanski, Zivko ;
Dimchev, Vladimir ;
Velkovski, Bodan .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2020, 56 (04) :3431-3442
[9]   Disturbances Classification Based on a Model Order Selection Method for Power Quality Monitoring [J].
Oubrahim, Zakarya ;
Choqueuse, Vincent ;
Amirat, Yassine ;
Benbouzid, Mohamed El Hachemi .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (12) :9421-9432
[10]   Classification of Complex Power Quality Disturbances Using Optimized S-Transform and Kernel SVM [J].
Tang, Qiu ;
Qiu, Wei ;
Zhou, Yicong .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (11) :9715-9723