Molecular identification and effect of salt-tolerant plant growth-promoting rhizobacteria on the biochemical aspect and growth of rice

被引:1
|
作者
Chompa, Sayma Serine [1 ]
Zuan, Ali Tan Kee [1 ]
Amin, Adibah Mohd [1 ]
Hun, Tan Geok [1 ]
Ghazali, Amir Hamzah Ahmad [2 ]
Sadeq, Buraq Musa [1 ]
Akter, Amaily [1 ]
Rahman, Md Ekhlasur [1 ,3 ]
Rashid, Harun Or [4 ]
机构
[1] Univ Putra Malaysia, Fac Agr, Serdang 43400, Selangor, Malaysia
[2] Univ Sains Malaysia, Sch Biol Sci, Gelugor 11800, Penang, Malaysia
[3] Soil Resource Dev Inst, Divis Lab, Dhaka 1215, Bangladesh
[4] Univ Putra Malaysia, Dept Modern Language & Commun, Serdang 43400, Selangor, Malaysia
来源
关键词
Antioxidants; Bacillus tequilensis; Bacillus aryabhattai; Oryza saliva; osmoprotectants; PGPR; plant growth; rice; salinity; STRESS TOLERANCE; SALINITY; SYSTEM; SOIL; L;
D O I
10.4067/S0718-58392024000500606
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Soil salinization, a rising issue globally, is a negative effect of the ever-changing climate, which has drawn attention to, and exacerbated problems related to soil degradation and the decline in wetland rice (Oryza sativa L.) production, leading to an unstable national economy. The use of rhizosphere inhabiting microorganisms (plant growth-promoting rhizobacteria, PGPR) is a viable method for boosting agricultural production on saline soils and reduce salt stress in rice crops. The objective of this study was to support the development of rice under salt stress by using a consortium of bacterial strains. 'Pokkali' rice plants inoculated with single Bacillus tequilensis and B. aryabhattai isolates were compared with consortium and non-inoculated plants while salinity was increased and by irrigation with tap water (control), 30 mM (5 dS m(-1)) and 60 mM (10 dS m(-1)) NaCl. The present study exhibited that inoculation of a mixed inoculum at 5 dS m(-1) resulted in significantly higher dry weight of the shoots and roots of seedlings (9.29 and 1.24 g, respectively) which was due to the increased SPAD value, proline content (7.55 mu mol g(-1) FW), and antioxidant enzyme activity in the inoculated plants. The higher accumulation of osmoprotectants such as proline supported Na+ ion reduction and antioxidant enzymes such as ascorbate peroxidase and reduced polyphenol oxidase content protect against higher cellular damage, eventually leading to increase plant growth performance in saline soil. This study demonstrates some positive effects of the locally isolated salt tolerant consortium PGPR strains on the growth of rice plants under salt stress conditions.
引用
收藏
页码:606 / 619
页数:14
相关论文
共 50 条
  • [31] Effect of plant growth-promoting rhizobacteria on senescence of flower petals
    Nayani, Seema
    Mayak, Shimon
    Glick, Bernard R.
    Indian Journal of Experimental Biology, 1998, 36 (08): : 836 - 839
  • [32] Salt-tolerant plant growth-promoting bacteria enhanced salinity tolerance of salt-tolerant alfalfa (Medicago sativa L.) cultivars at high salinity
    Ansari, Mohammad
    Shekari, Farid
    Mohammadi, Mohammad Hossein
    Juhos, Katalin
    Vegvari, Gyorgy
    Biro, Borbala
    ACTA PHYSIOLOGIAE PLANTARUM, 2019, 41 (12)
  • [33] Salt-tolerant plant growth-promoting bacteria enhanced salinity tolerance of salt-tolerant alfalfa (Medicago sativa L.) cultivars at high salinity
    Mohammad Ansari
    Farid Shekari
    Mohammad Hossein Mohammadi
    Katalin Juhos
    György Végvári
    Borbála Biró
    Acta Physiologiae Plantarum, 2019, 41
  • [34] Enzyme activities and effect of plant growth-promoting rhizobacteria on growth in mountain tea
    Esin, Dadasoglu
    Aykut, Oztekin
    Fatih, Dadasoglu
    Ramazan, Cakmakci
    Recep, Kotan
    Veysel, Comakli
    ROMANIAN BIOTECHNOLOGICAL LETTERS, 2017, 22 (03): : 12538 - 12545
  • [35] IRON REGULATION OF PLANT GROWTH-PROMOTING RHIZOBACTERIA
    KLOEPPER, JW
    SCHROTH, MN
    LEONG, J
    PHYTOPATHOLOGY, 1981, 71 (02) : 231 - 232
  • [36] Current Perspectives on Plant Growth-Promoting Rhizobacteria
    Javid A. Parray
    Sumira Jan
    Azra N. Kamili
    Raies A. Qadri
    Dilfuza Egamberdieva
    Parvaiz Ahmad
    Journal of Plant Growth Regulation, 2016, 35 : 877 - 902
  • [37] Plant Growth-Promoting Rhizobacteria in Bean Production
    Jarak, M.
    Jafari, T. H.
    Djuric, S.
    Varga, J. G.
    Cervenski, J.
    Vasic, M.
    Colo, J.
    V BALKAN SYMPOSIUM ON VEGETABLES AND POTATOES, 2012, 960 : 409 - 415
  • [38] Current Perspectives on Plant Growth-Promoting Rhizobacteria
    Parray, Javid A.
    Jan, Sumira
    Kamili, Azra N.
    Qadri, Raies A.
    Egamberdieva, Dilfuza
    Ahmad, Parvaiz
    JOURNAL OF PLANT GROWTH REGULATION, 2016, 35 (03) : 877 - 902
  • [39] PLANT GROWTH-PROMOTING RHIZOBACTERIA ON CANOLA (RAPESEED)
    KLOEPPER, JW
    HUME, DJ
    SCHER, FM
    SINGLETON, C
    TIPPING, B
    LALIBERTE, M
    FRAULEY, K
    KUTCHAW, T
    SIMONSON, C
    LIFSHITZ, R
    ZALESKA, I
    LEE, L
    PLANT DISEASE, 1988, 72 (01) : 42 - 46
  • [40] Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth
    Grobelak, A.
    Napora, A.
    Kacprzak, M.
    ECOLOGICAL ENGINEERING, 2015, 84 : 22 - 28